// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #pragma once /** * This is a system to schedule events into the emulated machine's future. Time is measured * in main CPU clock cycles. * * To schedule an event, you first have to register its type. This is where you pass in the * callback. You then schedule events using the type id you get back. * * The int cyclesLate that the callbacks get is how many cycles late it was. * So to schedule a new event on a regular basis: * inside callback: * ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever") */ #include <chrono> #include <functional> #include <limits> #include <string> #include <unordered_map> #include <vector> #include "common/common_types.h" #include "common/logging/log.h" #include "common/threadsafe_queue.h" // The timing we get from the assembly is 268,111,855.956 Hz // It is possible that this number isn't just an integer because the compiler could have // optimized the multiplication by a multiply-by-constant division. // Rounding to the nearest integer should be fine constexpr u64 BASE_CLOCK_RATE_ARM11 = 268111856; constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / BASE_CLOCK_RATE_ARM11; inline s64 msToCycles(int ms) { // since ms is int there is no way to overflow return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ms) / 1000; } inline s64 msToCycles(float ms) { return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.001f) * ms); } inline s64 msToCycles(double ms) { return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.001) * ms); } inline s64 usToCycles(float us) { return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.000001f) * us); } inline s64 usToCycles(int us) { return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us) / 1000000); } inline s64 usToCycles(s64 us) { if (us / 1000000 > MAX_VALUE_TO_MULTIPLY) { LOG_ERROR(Core_Timing, "Integer overflow, use max value"); return std::numeric_limits<s64>::max(); } if (us > MAX_VALUE_TO_MULTIPLY) { LOG_DEBUG(Core_Timing, "Time very big, do rounding"); return BASE_CLOCK_RATE_ARM11 * (us / 1000000); } return (BASE_CLOCK_RATE_ARM11 * us) / 1000000; } inline s64 usToCycles(u64 us) { if (us / 1000000 > MAX_VALUE_TO_MULTIPLY) { LOG_ERROR(Core_Timing, "Integer overflow, use max value"); return std::numeric_limits<s64>::max(); } if (us > MAX_VALUE_TO_MULTIPLY) { LOG_DEBUG(Core_Timing, "Time very big, do rounding"); return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us / 1000000); } return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us)) / 1000000; } inline s64 nsToCycles(float ns) { return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.000000001f) * ns); } inline s64 nsToCycles(int ns) { return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ns) / 1000000000; } inline s64 nsToCycles(s64 ns) { if (ns / 1000000000 > MAX_VALUE_TO_MULTIPLY) { LOG_ERROR(Core_Timing, "Integer overflow, use max value"); return std::numeric_limits<s64>::max(); } if (ns > MAX_VALUE_TO_MULTIPLY) { LOG_DEBUG(Core_Timing, "Time very big, do rounding"); return BASE_CLOCK_RATE_ARM11 * (ns / 1000000000); } return (BASE_CLOCK_RATE_ARM11 * ns) / 1000000000; } inline s64 nsToCycles(u64 ns) { if (ns / 1000000000 > MAX_VALUE_TO_MULTIPLY) { LOG_ERROR(Core_Timing, "Integer overflow, use max value"); return std::numeric_limits<s64>::max(); } if (ns > MAX_VALUE_TO_MULTIPLY) { LOG_DEBUG(Core_Timing, "Time very big, do rounding"); return BASE_CLOCK_RATE_ARM11 * (static_cast<s64>(ns) / 1000000000); } return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ns)) / 1000000000; } inline u64 cyclesToNs(s64 cycles) { return cycles * 1000000000 / BASE_CLOCK_RATE_ARM11; } inline s64 cyclesToUs(s64 cycles) { return cycles * 1000000 / BASE_CLOCK_RATE_ARM11; } inline u64 cyclesToMs(s64 cycles) { return cycles * 1000 / BASE_CLOCK_RATE_ARM11; } namespace Core { using TimedCallback = std::function<void(u64 userdata, int cycles_late)>; struct TimingEventType { TimedCallback callback; const std::string* name; }; class Timing { public: ~Timing(); /** * This should only be called from the emu thread, if you are calling it any other thread, you * are doing something evil */ u64 GetTicks() const; u64 GetIdleTicks() const; void AddTicks(u64 ticks); /** * Returns the event_type identifier. if name is not unique, it will assert. */ TimingEventType* RegisterEvent(const std::string& name, TimedCallback callback); /** * After the first Advance, the slice lengths and the downcount will be reduced whenever an * event is scheduled earlier than the current values. Scheduling from a callback will not * update the downcount until the Advance() completes. */ void ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, u64 userdata = 0); /** * This is to be called when outside of hle threads, such as the graphics thread, wants to * schedule things to be executed on the main thread. * Not that this doesn't change slice_length and thus events scheduled by this might be called * with a delay of up to MAX_SLICE_LENGTH */ void ScheduleEventThreadsafe(s64 cycles_into_future, const TimingEventType* event_type, u64 userdata); void UnscheduleEvent(const TimingEventType* event_type, u64 userdata); /// We only permit one event of each type in the queue at a time. void RemoveEvent(const TimingEventType* event_type); void RemoveNormalAndThreadsafeEvent(const TimingEventType* event_type); /** Advance must be called at the beginning of dispatcher loops, not the end. Advance() ends * the previous timing slice and begins the next one, you must Advance from the previous * slice to the current one before executing any cycles. CoreTiming starts in slice -1 so an * Advance() is required to initialize the slice length before the first cycle of emulated * instructions is executed. */ void Advance(); void MoveEvents(); /// Pretend that the main CPU has executed enough cycles to reach the next event. void Idle(); void ForceExceptionCheck(s64 cycles); std::chrono::microseconds GetGlobalTimeUs() const; s64 GetDowncount() const; private: struct Event { s64 time; u64 fifo_order; u64 userdata; const TimingEventType* type; bool operator>(const Event& right) const; bool operator<(const Event& right) const; }; static constexpr int MAX_SLICE_LENGTH = 20000; s64 global_timer = 0; s64 slice_length = MAX_SLICE_LENGTH; s64 downcount = MAX_SLICE_LENGTH; // unordered_map stores each element separately as a linked list node so pointers to // elements remain stable regardless of rehashes/resizing. std::unordered_map<std::string, TimingEventType> event_types; // The queue is a min-heap using std::make_heap/push_heap/pop_heap. // We don't use std::priority_queue because we need to be able to serialize, unserialize and // erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't // accomodated by the standard adaptor class. std::vector<Event> event_queue; u64 event_fifo_id = 0; // the queue for storing the events from other threads threadsafe until they will be added // to the event_queue by the emu thread Common::MPSCQueue<Event> ts_queue; s64 idled_cycles = 0; // Are we in a function that has been called from Advance() // If events are sheduled from a function that gets called from Advance(), // don't change slice_length and downcount. // The time between CoreTiming being intialized and the first call to Advance() is considered // the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before // executing the first cycle of each slice to prepare the slice length and downcount for // that slice. bool is_global_timer_sane = true; }; } // namespace Core