// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include <algorithm> #include <memory> #include "common/assert.h" #include "common/common_funcs.h" #include "common/logging/log.h" #include "core/hle/kernel/errors.h" #include "core/hle/kernel/memory.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/resource_limit.h" #include "core/hle/kernel/thread.h" #include "core/hle/kernel/vm_manager.h" #include "core/memory.h" namespace Kernel { // Lists all processes that exist in the current session. static std::vector<SharedPtr<Process>> process_list; SharedPtr<CodeSet> KernelSystem::CreateCodeSet(std::string name, u64 program_id) { SharedPtr<CodeSet> codeset(new CodeSet(*this)); codeset->name = std::move(name); codeset->program_id = program_id; return codeset; } CodeSet::CodeSet(KernelSystem& system) {} CodeSet::~CodeSet() {} u32 Process::next_process_id; SharedPtr<Process> Process::Create(SharedPtr<CodeSet> code_set) { SharedPtr<Process> process(new Process); process->codeset = std::move(code_set); process->flags.raw = 0; process->flags.memory_region.Assign(MemoryRegion::APPLICATION); process->status = ProcessStatus::Created; process_list.push_back(process); return process; } void Process::ParseKernelCaps(const u32* kernel_caps, std::size_t len) { for (std::size_t i = 0; i < len; ++i) { u32 descriptor = kernel_caps[i]; u32 type = descriptor >> 20; if (descriptor == 0xFFFFFFFF) { // Unused descriptor entry continue; } else if ((type & 0xF00) == 0xE00) { // 0x0FFF // Allowed interrupts list LOG_WARNING(Loader, "ExHeader allowed interrupts list ignored"); } else if ((type & 0xF80) == 0xF00) { // 0x07FF // Allowed syscalls mask unsigned int index = ((descriptor >> 24) & 7) * 24; u32 bits = descriptor & 0xFFFFFF; while (bits && index < svc_access_mask.size()) { svc_access_mask.set(index, bits & 1); ++index; bits >>= 1; } } else if ((type & 0xFF0) == 0xFE0) { // 0x00FF // Handle table size handle_table_size = descriptor & 0x3FF; } else if ((type & 0xFF8) == 0xFF0) { // 0x007F // Misc. flags flags.raw = descriptor & 0xFFFF; } else if ((type & 0xFFE) == 0xFF8) { // 0x001F // Mapped memory range if (i + 1 >= len || ((kernel_caps[i + 1] >> 20) & 0xFFE) != 0xFF8) { LOG_WARNING(Loader, "Incomplete exheader memory range descriptor ignored."); continue; } u32 end_desc = kernel_caps[i + 1]; ++i; // Skip over the second descriptor on the next iteration AddressMapping mapping; mapping.address = descriptor << 12; VAddr end_address = end_desc << 12; if (mapping.address < end_address) { mapping.size = end_address - mapping.address; } else { mapping.size = 0; } mapping.read_only = (descriptor & (1 << 20)) != 0; mapping.unk_flag = (end_desc & (1 << 20)) != 0; address_mappings.push_back(mapping); } else if ((type & 0xFFF) == 0xFFE) { // 0x000F // Mapped memory page AddressMapping mapping; mapping.address = descriptor << 12; mapping.size = Memory::PAGE_SIZE; mapping.read_only = false; mapping.unk_flag = false; address_mappings.push_back(mapping); } else if ((type & 0xFE0) == 0xFC0) { // 0x01FF // Kernel version kernel_version = descriptor & 0xFFFF; int minor = kernel_version & 0xFF; int major = (kernel_version >> 8) & 0xFF; LOG_INFO(Loader, "ExHeader kernel version: {}.{}", major, minor); } else { LOG_ERROR(Loader, "Unhandled kernel caps descriptor: 0x{:08X}", descriptor); } } } void Process::Run(s32 main_thread_priority, u32 stack_size) { memory_region = GetMemoryRegion(flags.memory_region); auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions, MemoryState memory_state) { auto vma = vm_manager .MapMemoryBlock(segment.addr, codeset->memory, segment.offset, segment.size, memory_state) .Unwrap(); vm_manager.Reprotect(vma, permissions); misc_memory_used += segment.size; memory_region->used += segment.size; }; // Map CodeSet segments MapSegment(codeset->CodeSegment(), VMAPermission::ReadExecute, MemoryState::Code); MapSegment(codeset->RODataSegment(), VMAPermission::Read, MemoryState::Code); MapSegment(codeset->DataSegment(), VMAPermission::ReadWrite, MemoryState::Private); // Allocate and map stack vm_manager .MapMemoryBlock(Memory::HEAP_VADDR_END - stack_size, std::make_shared<std::vector<u8>>(stack_size, 0), 0, stack_size, MemoryState::Locked) .Unwrap(); misc_memory_used += stack_size; memory_region->used += stack_size; // Map special address mappings MapSharedPages(vm_manager); for (const auto& mapping : address_mappings) { HandleSpecialMapping(vm_manager, mapping); } status = ProcessStatus::Running; vm_manager.LogLayout(Log::Level::Debug); Kernel::SetupMainThread(codeset->entrypoint, main_thread_priority, this); } VAddr Process::GetLinearHeapAreaAddress() const { // Starting from system version 8.0.0 a new linear heap layout is supported to allow usage of // the extra RAM in the n3DS. return kernel_version < 0x22C ? Memory::LINEAR_HEAP_VADDR : Memory::NEW_LINEAR_HEAP_VADDR; } VAddr Process::GetLinearHeapBase() const { return GetLinearHeapAreaAddress() + memory_region->base; } VAddr Process::GetLinearHeapLimit() const { return GetLinearHeapBase() + memory_region->size; } ResultVal<VAddr> Process::HeapAllocate(VAddr target, u32 size, VMAPermission perms) { if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END || target + size < target) { return ERR_INVALID_ADDRESS; } if (heap_memory == nullptr) { // Initialize heap heap_memory = std::make_shared<std::vector<u8>>(); heap_start = heap_end = target; } // If necessary, expand backing vector to cover new heap extents. if (target < heap_start) { heap_memory->insert(begin(*heap_memory), heap_start - target, 0); heap_start = target; vm_manager.RefreshMemoryBlockMappings(heap_memory.get()); } if (target + size > heap_end) { heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0); heap_end = target + size; vm_manager.RefreshMemoryBlockMappings(heap_memory.get()); } ASSERT(heap_end - heap_start == heap_memory->size()); CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, heap_memory, target - heap_start, size, MemoryState::Private)); vm_manager.Reprotect(vma, perms); heap_used += size; memory_region->used += size; return MakeResult<VAddr>(heap_end - size); } ResultCode Process::HeapFree(VAddr target, u32 size) { if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END || target + size < target) { return ERR_INVALID_ADDRESS; } if (size == 0) { return RESULT_SUCCESS; } ResultCode result = vm_manager.UnmapRange(target, size); if (result.IsError()) return result; heap_used -= size; memory_region->used -= size; return RESULT_SUCCESS; } ResultVal<VAddr> Process::LinearAllocate(VAddr target, u32 size, VMAPermission perms) { auto& linheap_memory = memory_region->linear_heap_memory; VAddr heap_end = GetLinearHeapBase() + (u32)linheap_memory->size(); // Games and homebrew only ever seem to pass 0 here (which lets the kernel decide the address), // but explicit addresses are also accepted and respected. if (target == 0) { target = heap_end; } if (target < GetLinearHeapBase() || target + size > GetLinearHeapLimit() || target > heap_end || target + size < target) { return ERR_INVALID_ADDRESS; } // Expansion of the linear heap is only allowed if you do an allocation immediately at its // end. It's possible to free gaps in the middle of the heap and then reallocate them later, // but expansions are only allowed at the end. if (target == heap_end) { linheap_memory->insert(linheap_memory->end(), size, 0); vm_manager.RefreshMemoryBlockMappings(linheap_memory.get()); } // TODO(yuriks): As is, this lets processes map memory allocated by other processes from the // same region. It is unknown if or how the 3DS kernel checks against this. std::size_t offset = target - GetLinearHeapBase(); CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, linheap_memory, offset, size, MemoryState::Continuous)); vm_manager.Reprotect(vma, perms); linear_heap_used += size; memory_region->used += size; return MakeResult<VAddr>(target); } ResultCode Process::LinearFree(VAddr target, u32 size) { auto& linheap_memory = memory_region->linear_heap_memory; if (target < GetLinearHeapBase() || target + size > GetLinearHeapLimit() || target + size < target) { return ERR_INVALID_ADDRESS; } if (size == 0) { return RESULT_SUCCESS; } VAddr heap_end = GetLinearHeapBase() + (u32)linheap_memory->size(); if (target + size > heap_end) { return ERR_INVALID_ADDRESS_STATE; } ResultCode result = vm_manager.UnmapRange(target, size); if (result.IsError()) return result; linear_heap_used -= size; memory_region->used -= size; if (target + size == heap_end) { // End of linear heap has been freed, so check what's the last allocated block in it and // reduce the size. auto vma = vm_manager.FindVMA(target); ASSERT(vma != vm_manager.vma_map.end()); ASSERT(vma->second.type == VMAType::Free); VAddr new_end = vma->second.base; if (new_end >= GetLinearHeapBase()) { linheap_memory->resize(new_end - GetLinearHeapBase()); } } return RESULT_SUCCESS; } Kernel::Process::Process() {} Kernel::Process::~Process() {} void ClearProcessList() { process_list.clear(); } SharedPtr<Process> GetProcessById(u32 process_id) { auto itr = std::find_if( process_list.begin(), process_list.end(), [&](const SharedPtr<Process>& process) { return process->process_id == process_id; }); if (itr == process_list.end()) return nullptr; return *itr; } SharedPtr<Process> g_current_process; } // namespace Kernel