// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #pragma once #include <new> #include <utility> #include "common/assert.h" #include "common/bit_field.h" #include "common/common_funcs.h" #include "common/common_types.h" // All the constants in this file come from http://3dbrew.org/wiki/Error_codes /** * Detailed description of the error. Code 0 always means success. Codes 1000 and above are * considered "well-known" and have common values between all modules. The meaning of other codes * vary by module. */ enum class ErrorDescription : u32 { Success = 0, // Codes 1000 and above are considered "well-known" and have common values between all modules. InvalidSection = 1000, TooLarge = 1001, NotAuthorized = 1002, AlreadyDone = 1003, InvalidSize = 1004, InvalidEnumValue = 1005, InvalidCombination = 1006, NoData = 1007, Busy = 1008, MisalignedAddress = 1009, MisalignedSize = 1010, OutOfMemory = 1011, NotImplemented = 1012, InvalidAddress = 1013, InvalidPointer = 1014, InvalidHandle = 1015, NotInitialized = 1016, AlreadyInitialized = 1017, NotFound = 1018, CancelRequested = 1019, AlreadyExists = 1020, OutOfRange = 1021, Timeout = 1022, InvalidResultValue = 1023, }; /** * Identifies the module which caused the error. Error codes can be propagated through a call * chain, meaning that this doesn't always correspond to the module where the API call made is * contained. */ enum class ErrorModule : u32 { Common = 0, Kernel = 1, Util = 2, FileServer = 3, LoaderServer = 4, TCB = 5, OS = 6, DBG = 7, DMNT = 8, PDN = 9, GX = 10, I2C = 11, GPIO = 12, DD = 13, CODEC = 14, SPI = 15, PXI = 16, FS = 17, DI = 18, HID = 19, CAM = 20, PI = 21, PM = 22, PM_LOW = 23, FSI = 24, SRV = 25, NDM = 26, NWM = 27, SOC = 28, LDR = 29, ACC = 30, RomFS = 31, AM = 32, HIO = 33, Updater = 34, MIC = 35, FND = 36, MP = 37, MPWL = 38, AC = 39, HTTP = 40, DSP = 41, SND = 42, DLP = 43, HIO_LOW = 44, CSND = 45, SSL = 46, AM_LOW = 47, NEX = 48, Friends = 49, RDT = 50, Applet = 51, NIM = 52, PTM = 53, MIDI = 54, MC = 55, SWC = 56, FatFS = 57, NGC = 58, CARD = 59, CARDNOR = 60, SDMC = 61, BOSS = 62, DBM = 63, Config = 64, PS = 65, CEC = 66, IR = 67, UDS = 68, PL = 69, CUP = 70, Gyroscope = 71, MCU = 72, NS = 73, News = 74, RO = 75, GD = 76, CardSPI = 77, EC = 78, WebBrowser = 79, Test = 80, ENC = 81, PIA = 82, ACT = 83, VCTL = 84, OLV = 85, NEIA = 86, NPNS = 87, AVD = 90, L2B = 91, MVD = 92, NFC = 93, UART = 94, SPM = 95, QTM = 96, NFP = 97, Application = 254, InvalidResult = 255 }; /// A less specific error cause. enum class ErrorSummary : u32 { Success = 0, NothingHappened = 1, WouldBlock = 2, OutOfResource = 3, ///< There are no more kernel resources (memory, table slots) to ///< execute the operation. NotFound = 4, ///< A file or resource was not found. InvalidState = 5, NotSupported = 6, ///< The operation is not supported or not implemented. InvalidArgument = 7, ///< Returned when a passed argument is invalid in the current runtime ///< context. (Invalid handle, out-of-bounds pointer or size, etc.) WrongArgument = 8, ///< Returned when a passed argument is in an incorrect format for use ///< with the function. (E.g. Invalid enum value) Canceled = 9, StatusChanged = 10, Internal = 11, InvalidResult = 63 }; /// The severity of the error. enum class ErrorLevel : u32 { Success = 0, Info = 1, Status = 25, Temporary = 26, Permanent = 27, Usage = 28, Reinitialize = 29, Reset = 30, Fatal = 31 }; /// Encapsulates a CTR-OS error code, allowing it to be separated into its constituent fields. union ResultCode { u32 raw; BitField<0, 10, u32> description; BitField<10, 8, ErrorModule> module; BitField<21, 6, ErrorSummary> summary; BitField<27, 5, ErrorLevel> level; // The last bit of `level` is checked by apps and the kernel to determine if a result code is an // error BitField<31, 1, u32> is_error; constexpr explicit ResultCode(u32 raw) : raw(raw) {} constexpr ResultCode(ErrorDescription description, ErrorModule module, ErrorSummary summary, ErrorLevel level) : ResultCode(static_cast<u32>(description), module, summary, level) {} constexpr ResultCode(u32 description_, ErrorModule module_, ErrorSummary summary_, ErrorLevel level_) : raw(description.FormatValue(description_) | module.FormatValue(module_) | summary.FormatValue(summary_) | level.FormatValue(level_)) {} constexpr ResultCode& operator=(const ResultCode& o) { raw = o.raw; return *this; } constexpr bool IsSuccess() const { return is_error.ExtractValue(raw) == 0; } constexpr bool IsError() const { return is_error.ExtractValue(raw) == 1; } }; constexpr bool operator==(const ResultCode& a, const ResultCode& b) { return a.raw == b.raw; } constexpr bool operator!=(const ResultCode& a, const ResultCode& b) { return a.raw != b.raw; } // Convenience functions for creating some common kinds of errors: /// The default success `ResultCode`. constexpr ResultCode RESULT_SUCCESS(0); /// Might be returned instead of a dummy success for unimplemented APIs. constexpr ResultCode UnimplementedFunction(ErrorModule module) { return ResultCode(ErrorDescription::NotImplemented, module, ErrorSummary::NotSupported, ErrorLevel::Permanent); } /** * This is an optional value type. It holds a `ResultCode` and, if that code is a success code, * also holds a result of type `T`. If the code is an error code then trying to access the inner * value fails, thus ensuring that the ResultCode of functions is always checked properly before * their return value is used. It is similar in concept to the `std::optional` type * (http://en.cppreference.com/w/cpp/experimental/optional) originally proposed for inclusion in * C++14, or the `Result` type in Rust (http://doc.rust-lang.org/std/result/index.html). * * An example of how it could be used: * \code * ResultVal<int> Frobnicate(float strength) { * if (strength < 0.f || strength > 1.0f) { * // Can't frobnicate too weakly or too strongly * return ResultCode(ErrorDescription::OutOfRange, ErrorModule::Common, * ErrorSummary::InvalidArgument, ErrorLevel::Permanent); * } else { * // Frobnicated! Give caller a cookie * return MakeResult<int>(42); * } * } * \endcode * * \code * ResultVal<int> frob_result = Frobnicate(0.75f); * if (frob_result) { * // Frobbed ok * printf("My cookie is %d\n", *frob_result); * } else { * printf("Guess I overdid it. :( Error code: %ux\n", frob_result.code().hex); * } * \endcode */ template <typename T> class ResultVal { public: /// Constructs an empty `ResultVal` with the given error code. The code must not be a success /// code. ResultVal(ResultCode error_code = ResultCode(-1)) : result_code(error_code) { ASSERT(error_code.IsError()); } /** * Similar to the non-member function `MakeResult`, with the exception that you can manually * specify the success code. `success_code` must not be an error code. */ template <typename... Args> static ResultVal WithCode(ResultCode success_code, Args&&... args) { ResultVal<T> result; result.emplace(success_code, std::forward<Args>(args)...); return result; } ResultVal(const ResultVal& o) : result_code(o.result_code) { if (!o.empty()) { new (&object) T(o.object); } } ResultVal(ResultVal&& o) : result_code(o.result_code) { if (!o.empty()) { new (&object) T(std::move(o.object)); } } ~ResultVal() { if (!empty()) { object.~T(); } } ResultVal& operator=(const ResultVal& o) { if (!empty()) { if (!o.empty()) { object = o.object; } else { object.~T(); } } else { if (!o.empty()) { new (&object) T(o.object); } } result_code = o.result_code; return *this; } /** * Replaces the current result with a new constructed result value in-place. The code must not * be an error code. */ template <typename... Args> void emplace(ResultCode success_code, Args&&... args) { ASSERT(success_code.IsSuccess()); if (!empty()) { object.~T(); } new (&object) T(std::forward<Args>(args)...); result_code = success_code; } /// Returns true if the `ResultVal` contains an error code and no value. bool empty() const { return result_code.IsError(); } /// Returns true if the `ResultVal` contains a return value. bool Succeeded() const { return result_code.IsSuccess(); } /// Returns true if the `ResultVal` contains an error code and no value. bool Failed() const { return empty(); } ResultCode Code() const { return result_code; } const T& operator*() const { return object; } T& operator*() { return object; } const T* operator->() const { return &object; } T* operator->() { return &object; } /// Returns the value contained in this `ResultVal`, or the supplied default if it is missing. template <typename U> T ValueOr(U&& value) const { return !empty() ? object : std::move(value); } /// Asserts that the result succeeded and returns a reference to it. T& Unwrap() & { ASSERT_MSG(Succeeded(), "Tried to Unwrap empty ResultVal"); return **this; } T&& Unwrap() && { ASSERT_MSG(Succeeded(), "Tried to Unwrap empty ResultVal"); return std::move(**this); } private: // A union is used to allocate the storage for the value, while allowing us to construct and // destruct it at will. union { T object; }; ResultCode result_code; }; /** * This function is a helper used to construct `ResultVal`s. It receives the arguments to construct * `T` with and creates a success `ResultVal` contained the constructed value. */ template <typename T, typename... Args> ResultVal<T> MakeResult(Args&&... args) { return ResultVal<T>::WithCode(RESULT_SUCCESS, std::forward<Args>(args)...); } /** * Deducible overload of MakeResult, allowing the template parameter to be ommited if you're just * copy or move constructing. */ template <typename Arg> ResultVal<std::remove_reference_t<Arg>> MakeResult(Arg&& arg) { return ResultVal<std::remove_reference_t<Arg>>::WithCode(RESULT_SUCCESS, std::forward<Arg>(arg)); } /** * Check for the success of `source` (which must evaluate to a ResultVal). If it succeeds, unwraps * the contained value and assigns it to `target`, which can be either an l-value expression or a * variable declaration. If it fails the return code is returned from the current function. Thus it * can be used to cascade errors out, achieving something akin to exception handling. */ #define CASCADE_RESULT(target, source) \ auto CONCAT2(check_result_L, __LINE__) = source; \ if (CONCAT2(check_result_L, __LINE__).Failed()) \ return CONCAT2(check_result_L, __LINE__).Code(); \ target = std::move(*CONCAT2(check_result_L, __LINE__)) /** * Analogous to CASCADE_RESULT, but for a bare ResultCode. The code will be propagated if * non-success, or discarded otherwise. */ #define CASCADE_CODE(source) \ auto CONCAT2(check_result_L, __LINE__) = source; \ if (CONCAT2(check_result_L, __LINE__).IsError()) \ return CONCAT2(check_result_L, __LINE__);