// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. // Originally written by Sven Peter <sven@fail0verflow.com> for anergistic. #include <algorithm> #include <atomic> #include <climits> #include <csignal> #include <cstdarg> #include <cstdio> #include <cstring> #include <map> #include <numeric> #include <fcntl.h> #ifdef _WIN32 #include <winsock2.h> // winsock2.h needs to be included first to prevent winsock.h being included by other includes #include <io.h> #include <iphlpapi.h> #include <ws2tcpip.h> #define SHUT_RDWR 2 #else #include <netinet/in.h> #include <sys/select.h> #include <sys/socket.h> #include <sys/un.h> #include <unistd.h> #endif #include "common/logging/log.h" #include "common/string_util.h" #include "core/arm/arm_interface.h" #include "core/core.h" #include "core/gdbstub/gdbstub.h" #include "core/loader/loader.h" #include "core/memory.h" const int GDB_BUFFER_SIZE = 10000; const char GDB_STUB_START = '$'; const char GDB_STUB_END = '#'; const char GDB_STUB_ACK = '+'; const char GDB_STUB_NACK = '-'; #ifndef SIGTRAP const u32 SIGTRAP = 5; #endif #ifndef SIGTERM const u32 SIGTERM = 15; #endif #ifndef MSG_WAITALL const u32 MSG_WAITALL = 8; #endif const u32 R15_REGISTER = 15; const u32 CPSR_REGISTER = 25; const u32 FPSCR_REGISTER = 58; // For sample XML files see the GDB source /gdb/features // GDB also wants the l character at the start // This XML defines what the registers are for this specific ARM device static const char* target_xml = R"(l<?xml version="1.0"?> <!DOCTYPE target SYSTEM "gdb-target.dtd"> <target version="1.0"> <feature name="org.gnu.gdb.arm.core"> <reg name="r0" bitsize="32"/> <reg name="r1" bitsize="32"/> <reg name="r2" bitsize="32"/> <reg name="r3" bitsize="32"/> <reg name="r4" bitsize="32"/> <reg name="r5" bitsize="32"/> <reg name="r6" bitsize="32"/> <reg name="r7" bitsize="32"/> <reg name="r8" bitsize="32"/> <reg name="r9" bitsize="32"/> <reg name="r10" bitsize="32"/> <reg name="r11" bitsize="32"/> <reg name="r12" bitsize="32"/> <reg name="sp" bitsize="32" type="data_ptr"/> <reg name="lr" bitsize="32"/> <reg name="pc" bitsize="32" type="code_ptr"/> <!-- The CPSR is register 25, rather than register 16, because the FPA registers historically were placed between the PC and the CPSR in the "g" packet. --> <reg name="cpsr" bitsize="32" regnum="25"/> </feature> <feature name="org.gnu.gdb.arm.vfp"> <reg name="d0" bitsize="64" type="float"/> <reg name="d1" bitsize="64" type="float"/> <reg name="d2" bitsize="64" type="float"/> <reg name="d3" bitsize="64" type="float"/> <reg name="d4" bitsize="64" type="float"/> <reg name="d5" bitsize="64" type="float"/> <reg name="d6" bitsize="64" type="float"/> <reg name="d7" bitsize="64" type="float"/> <reg name="d8" bitsize="64" type="float"/> <reg name="d9" bitsize="64" type="float"/> <reg name="d10" bitsize="64" type="float"/> <reg name="d11" bitsize="64" type="float"/> <reg name="d12" bitsize="64" type="float"/> <reg name="d13" bitsize="64" type="float"/> <reg name="d14" bitsize="64" type="float"/> <reg name="d15" bitsize="64" type="float"/> <reg name="fpscr" bitsize="32" type="int" group="float"/> </feature> </target> )"; namespace GDBStub { static int gdbserver_socket = -1; static u8 command_buffer[GDB_BUFFER_SIZE]; static u32 command_length; static u32 latest_signal = 0; static bool step_break = false; static bool memory_break = false; // Binding to a port within the reserved ports range (0-1023) requires root permissions, // so default to a port outside of that range. static u16 gdbstub_port = 24689; static bool halt_loop = true; static bool step_loop = false; // If set to false, the server will never be started and no // gdbstub-related functions will be executed. static std::atomic<bool> server_enabled(false); #ifdef _WIN32 WSADATA InitData; #endif struct Breakpoint { bool active; PAddr addr; u32 len; }; static std::map<u32, Breakpoint> breakpoints_execute; static std::map<u32, Breakpoint> breakpoints_read; static std::map<u32, Breakpoint> breakpoints_write; /** * Turns hex string character into the equivalent byte. * * @param hex Input hex character to be turned into byte. */ static u8 HexCharToValue(u8 hex) { if (hex >= '0' && hex <= '9') { return hex - '0'; } else if (hex >= 'a' && hex <= 'f') { return hex - 'a' + 0xA; } else if (hex >= 'A' && hex <= 'F') { return hex - 'A' + 0xA; } LOG_ERROR(Debug_GDBStub, "Invalid nibble: {:c} {:02x}\n", hex, hex); return 0; } /** * Turn nibble of byte into hex string character. * * @param n Nibble to be turned into hex character. */ static u8 NibbleToHex(u8 n) { n &= 0xF; if (n < 0xA) { return '0' + n; } else { return 'A' + n - 0xA; } } /** * Converts input hex string characters into an array of equivalent of u8 bytes. * * @param src Pointer to array of output hex string characters. * @param len Length of src array. */ static u32 HexToInt(const u8* src, size_t len) { u32 output = 0; while (len-- > 0) { output = (output << 4) | HexCharToValue(src[0]); src++; } return output; } /** * Converts input array of u8 bytes into their equivalent hex string characters. * * @param dest Pointer to buffer to store output hex string characters. * @param src Pointer to array of u8 bytes. * @param len Length of src array. */ static void MemToGdbHex(u8* dest, const u8* src, size_t len) { while (len-- > 0) { u8 tmp = *src++; *dest++ = NibbleToHex(tmp >> 4); *dest++ = NibbleToHex(tmp); } } /** * Converts input gdb-formatted hex string characters into an array of equivalent of u8 bytes. * * @param dest Pointer to buffer to store u8 bytes. * @param src Pointer to array of output hex string characters. * @param len Length of src array. */ static void GdbHexToMem(u8* dest, const u8* src, size_t len) { while (len-- > 0) { *dest++ = (HexCharToValue(src[0]) << 4) | HexCharToValue(src[1]); src += 2; } } /** * Convert a u32 into a gdb-formatted hex string. * * @param dest Pointer to buffer to store output hex string characters. * @param v Value to convert. */ static void IntToGdbHex(u8* dest, u32 v) { for (int i = 0; i < 8; i += 2) { dest[i + 1] = NibbleToHex(v >> (4 * i)); dest[i] = NibbleToHex(v >> (4 * (i + 1))); } } /** * Convert a gdb-formatted hex string into a u32. * * @param src Pointer to hex string. */ static u32 GdbHexToInt(const u8* src) { u32 output = 0; for (int i = 0; i < 8; i += 2) { output = (output << 4) | HexCharToValue(src[7 - i - 1]); output = (output << 4) | HexCharToValue(src[7 - i]); } return output; } /// Read a byte from the gdb client. static u8 ReadByte() { u8 c; size_t received_size = recv(gdbserver_socket, reinterpret_cast<char*>(&c), 1, MSG_WAITALL); if (received_size != 1) { LOG_ERROR(Debug_GDBStub, "recv failed : {}", received_size); Shutdown(); } return c; } /// Calculate the checksum of the current command buffer. static u8 CalculateChecksum(const u8* buffer, size_t length) { return static_cast<u8>(std::accumulate(buffer, buffer + length, 0, std::plus<u8>())); } /** * Get the list of breakpoints for a given breakpoint type. * * @param type Type of breakpoint list. */ static std::map<u32, Breakpoint>& GetBreakpointList(BreakpointType type) { switch (type) { case BreakpointType::Execute: return breakpoints_execute; case BreakpointType::Read: return breakpoints_read; case BreakpointType::Write: return breakpoints_write; default: return breakpoints_read; } } /** * Remove the breakpoint from the given address of the specified type. * * @param type Type of breakpoint. * @param addr Address of breakpoint. */ static void RemoveBreakpoint(BreakpointType type, PAddr addr) { std::map<u32, Breakpoint>& p = GetBreakpointList(type); auto bp = p.find(addr); if (bp != p.end()) { LOG_DEBUG(Debug_GDBStub, "gdb: removed a breakpoint: {:08x} bytes at {:08x} of type {}\n", bp->second.len, bp->second.addr, static_cast<int>(type)); p.erase(addr); } } BreakpointAddress GetNextBreakpointFromAddress(PAddr addr, BreakpointType type) { std::map<u32, Breakpoint>& p = GetBreakpointList(type); auto next_breakpoint = p.lower_bound(addr); BreakpointAddress breakpoint; if (next_breakpoint != p.end()) { breakpoint.address = next_breakpoint->first; breakpoint.type = type; } else { breakpoint.address = 0; breakpoint.type = BreakpointType::None; } return breakpoint; } bool CheckBreakpoint(PAddr addr, BreakpointType type) { if (!IsConnected()) { return false; } std::map<u32, Breakpoint>& p = GetBreakpointList(type); auto bp = p.find(addr); if (bp != p.end()) { u32 len = bp->second.len; // IDA Pro defaults to 4-byte breakpoints for all non-hardware breakpoints // no matter if it's a 4-byte or 2-byte instruction. When you execute a // Thumb instruction with a 4-byte breakpoint set, it will set a breakpoint on // two instructions instead of the single instruction you placed the breakpoint // on. So, as a way to make sure that execution breakpoints are only breaking // on the instruction that was specified, set the length of an execution // breakpoint to 1. This should be fine since the CPU should never begin executing // an instruction anywhere except the beginning of the instruction. if (type == BreakpointType::Execute) { len = 1; } if (bp->second.active && (addr >= bp->second.addr && addr < bp->second.addr + len)) { LOG_DEBUG(Debug_GDBStub, "Found breakpoint type {} @ {:08x}, range: {:08x} - {:08x} ({} bytes)\n", static_cast<int>(type), addr, bp->second.addr, bp->second.addr + len, len); return true; } } return false; } /** * Send packet to gdb client. * * @param packet Packet to be sent to client. */ static void SendPacket(const char packet) { size_t sent_size = send(gdbserver_socket, &packet, 1, 0); if (sent_size != 1) { LOG_ERROR(Debug_GDBStub, "send failed"); } } /** * Send reply to gdb client. * * @param reply Reply to be sent to client. */ static void SendReply(const char* reply) { if (!IsConnected()) { return; } memset(command_buffer, 0, sizeof(command_buffer)); command_length = static_cast<u32>(strlen(reply)); if (command_length + 4 > sizeof(command_buffer)) { LOG_ERROR(Debug_GDBStub, "command_buffer overflow in SendReply"); return; } memcpy(command_buffer + 1, reply, command_length); u8 checksum = CalculateChecksum(command_buffer, command_length + 1); command_buffer[0] = GDB_STUB_START; command_buffer[command_length + 1] = GDB_STUB_END; command_buffer[command_length + 2] = NibbleToHex(checksum >> 4); command_buffer[command_length + 3] = NibbleToHex(checksum); u8* ptr = command_buffer; u32 left = command_length + 4; while (left > 0) { int sent_size = send(gdbserver_socket, reinterpret_cast<char*>(ptr), left, 0); if (sent_size < 0) { LOG_ERROR(Debug_GDBStub, "gdb: send failed"); return Shutdown(); } left -= sent_size; ptr += sent_size; } } /// Handle query command from gdb client. static void HandleQuery() { LOG_DEBUG(Debug_GDBStub, "gdb: query '{}'\n", command_buffer + 1); const char* query = reinterpret_cast<const char*>(command_buffer + 1); if (strcmp(query, "TStatus") == 0) { SendReply("T0"); } else if (strncmp(query, "Supported", strlen("Supported")) == 0) { // PacketSize needs to be large enough for target xml SendReply("PacketSize=800;qXfer:features:read+"); } else if (strncmp(query, "Xfer:features:read:target.xml:", strlen("Xfer:features:read:target.xml:")) == 0) { SendReply(target_xml); } else { SendReply(""); } } /// Handle set thread command from gdb client. static void HandleSetThread() { if (memcmp(command_buffer, "Hg0", 3) == 0 || memcmp(command_buffer, "Hc-1", 4) == 0 || memcmp(command_buffer, "Hc0", 4) == 0 || memcmp(command_buffer, "Hc1", 4) == 0) { return SendReply("OK"); } SendReply("E01"); } /** * Send signal packet to client. * * @param signal Signal to be sent to client. */ static void SendSignal(u32 signal) { if (gdbserver_socket == -1) { return; } latest_signal = signal; std::string buffer = Common::StringFromFormat("T%02x%02x:%08x;%02x:%08x;", latest_signal, 15, htonl(Core::CPU().GetPC()), 13, htonl(Core::CPU().GetReg(13))); LOG_DEBUG(Debug_GDBStub, "Response: {}", buffer); SendReply(buffer.c_str()); } /// Read command from gdb client. static void ReadCommand() { command_length = 0; memset(command_buffer, 0, sizeof(command_buffer)); u8 c = ReadByte(); if (c == '+') { // ignore ack return; } else if (c == 0x03) { LOG_INFO(Debug_GDBStub, "gdb: found break command\n"); halt_loop = true; SendSignal(SIGTRAP); return; } else if (c != GDB_STUB_START) { LOG_DEBUG(Debug_GDBStub, "gdb: read invalid byte {:02x}\n", c); return; } while ((c = ReadByte()) != GDB_STUB_END) { if (command_length >= sizeof(command_buffer)) { LOG_ERROR(Debug_GDBStub, "gdb: command_buffer overflow\n"); SendPacket(GDB_STUB_NACK); return; } command_buffer[command_length++] = c; } u8 checksum_received = HexCharToValue(ReadByte()) << 4; checksum_received |= HexCharToValue(ReadByte()); u8 checksum_calculated = CalculateChecksum(command_buffer, command_length); if (checksum_received != checksum_calculated) { LOG_ERROR( Debug_GDBStub, "gdb: invalid checksum: calculated {:02x} and read {:02x} for ${}# (length: {})\n", checksum_calculated, checksum_received, command_buffer, command_length); command_length = 0; SendPacket(GDB_STUB_NACK); return; } SendPacket(GDB_STUB_ACK); } /// Check if there is data to be read from the gdb client. static bool IsDataAvailable() { if (!IsConnected()) { return false; } fd_set fd_socket; FD_ZERO(&fd_socket); FD_SET(gdbserver_socket, &fd_socket); struct timeval t; t.tv_sec = 0; t.tv_usec = 0; if (select(gdbserver_socket + 1, &fd_socket, nullptr, nullptr, &t) < 0) { LOG_ERROR(Debug_GDBStub, "select failed"); return false; } return FD_ISSET(gdbserver_socket, &fd_socket) != 0; } /// Send requested register to gdb client. static void ReadRegister() { static u8 reply[64]; memset(reply, 0, sizeof(reply)); u32 id = HexCharToValue(command_buffer[1]); if (command_buffer[2] != '\0') { id <<= 4; id |= HexCharToValue(command_buffer[2]); } if (id <= R15_REGISTER) { IntToGdbHex(reply, Core::CPU().GetReg(id)); } else if (id == CPSR_REGISTER) { IntToGdbHex(reply, Core::CPU().GetCPSR()); } else if (id > CPSR_REGISTER && id < FPSCR_REGISTER) { IntToGdbHex(reply, Core::CPU().GetVFPReg( id - CPSR_REGISTER - 1)); // VFP registers should start at 26, so one after CSPR_REGISTER } else if (id == FPSCR_REGISTER) { IntToGdbHex(reply, Core::CPU().GetVFPSystemReg(VFP_FPSCR)); // Get FPSCR IntToGdbHex(reply + 8, 0); } else { return SendReply("E01"); } SendReply(reinterpret_cast<char*>(reply)); } /// Send all registers to the gdb client. static void ReadRegisters() { static u8 buffer[GDB_BUFFER_SIZE - 4]; memset(buffer, 0, sizeof(buffer)); u8* bufptr = buffer; for (u32 reg = 0; reg <= R15_REGISTER; reg++) { IntToGdbHex(bufptr + reg * CHAR_BIT, Core::CPU().GetReg(reg)); } bufptr += (16 * CHAR_BIT); IntToGdbHex(bufptr, Core::CPU().GetCPSR()); bufptr += CHAR_BIT; for (u32 reg = 0; reg <= 31; reg++) { IntToGdbHex(bufptr + reg * CHAR_BIT, Core::CPU().GetVFPReg(reg)); } bufptr += (32 * CHAR_BIT); IntToGdbHex(bufptr, Core::CPU().GetVFPSystemReg(VFP_FPSCR)); SendReply(reinterpret_cast<char*>(buffer)); } /// Modify data of register specified by gdb client. static void WriteRegister() { const u8* buffer_ptr = command_buffer + 3; u32 id = HexCharToValue(command_buffer[1]); if (command_buffer[2] != '=') { ++buffer_ptr; id <<= 4; id |= HexCharToValue(command_buffer[2]); } if (id <= R15_REGISTER) { Core::CPU().SetReg(id, GdbHexToInt(buffer_ptr)); } else if (id == CPSR_REGISTER) { Core::CPU().SetCPSR(GdbHexToInt(buffer_ptr)); } else if (id > CPSR_REGISTER && id < FPSCR_REGISTER) { Core::CPU().SetVFPReg(id - CPSR_REGISTER - 1, GdbHexToInt(buffer_ptr)); } else if (id == FPSCR_REGISTER) { Core::CPU().SetVFPSystemReg(VFP_FPSCR, GdbHexToInt(buffer_ptr)); } else { return SendReply("E01"); } SendReply("OK"); } /// Modify all registers with data received from the client. static void WriteRegisters() { const u8* buffer_ptr = command_buffer + 1; if (command_buffer[0] != 'G') return SendReply("E01"); for (u32 i = 0, reg = 0; reg <= FPSCR_REGISTER; i++, reg++) { if (reg <= R15_REGISTER) { Core::CPU().SetReg(reg, GdbHexToInt(buffer_ptr + i * CHAR_BIT)); } else if (reg == CPSR_REGISTER) { Core::CPU().SetCPSR(GdbHexToInt(buffer_ptr + i * CHAR_BIT)); } else if (reg == CPSR_REGISTER - 1) { // Dummy FPA register, ignore } else if (reg < CPSR_REGISTER) { // Dummy FPA registers, ignore i += 2; } else if (reg > CPSR_REGISTER && reg < FPSCR_REGISTER) { Core::CPU().SetVFPReg(reg - CPSR_REGISTER - 1, GdbHexToInt(buffer_ptr + i * CHAR_BIT)); i++; // Skip padding } else if (reg == FPSCR_REGISTER) { Core::CPU().SetVFPSystemReg(VFP_FPSCR, GdbHexToInt(buffer_ptr + i * CHAR_BIT)); } } SendReply("OK"); } /// Read location in memory specified by gdb client. static void ReadMemory() { static u8 reply[GDB_BUFFER_SIZE - 4]; auto start_offset = command_buffer + 1; auto addr_pos = std::find(start_offset, command_buffer + command_length, ','); VAddr addr = HexToInt(start_offset, static_cast<u32>(addr_pos - start_offset)); start_offset = addr_pos + 1; u32 len = HexToInt(start_offset, static_cast<u32>((command_buffer + command_length) - start_offset)); LOG_DEBUG(Debug_GDBStub, "gdb: addr: {:08x} len: {:08x}\n", addr, len); if (len * 2 > sizeof(reply)) { SendReply("E01"); } if (!Memory::IsValidVirtualAddress(addr)) { return SendReply("E00"); } std::vector<u8> data(len); Memory::ReadBlock(addr, data.data(), len); MemToGdbHex(reply, data.data(), len); reply[len * 2] = '\0'; SendReply(reinterpret_cast<char*>(reply)); } /// Modify location in memory with data received from the gdb client. static void WriteMemory() { auto start_offset = command_buffer + 1; auto addr_pos = std::find(start_offset, command_buffer + command_length, ','); VAddr addr = HexToInt(start_offset, static_cast<u32>(addr_pos - start_offset)); start_offset = addr_pos + 1; auto len_pos = std::find(start_offset, command_buffer + command_length, ':'); u32 len = HexToInt(start_offset, static_cast<u32>(len_pos - start_offset)); if (!Memory::IsValidVirtualAddress(addr)) { return SendReply("E00"); } std::vector<u8> data(len); GdbHexToMem(data.data(), len_pos + 1, len); Memory::WriteBlock(addr, data.data(), len); SendReply("OK"); } void Break(bool is_memory_break) { if (!halt_loop) { halt_loop = true; SendSignal(SIGTRAP); } memory_break = is_memory_break; } /// Tell the CPU that it should perform a single step. static void Step() { step_loop = true; halt_loop = true; step_break = true; SendSignal(SIGTRAP); } bool IsMemoryBreak() { if (IsConnected()) { return false; } return memory_break; } /// Tell the CPU to continue executing. static void Continue() { memory_break = false; step_break = false; step_loop = false; halt_loop = false; } /** * Commit breakpoint to list of breakpoints. * * @param type Type of breakpoint. * @param addr Address of breakpoint. * @param len Length of breakpoint. */ static bool CommitBreakpoint(BreakpointType type, PAddr addr, u32 len) { std::map<u32, Breakpoint>& p = GetBreakpointList(type); Breakpoint breakpoint; breakpoint.active = true; breakpoint.addr = addr; breakpoint.len = len; p.insert({addr, breakpoint}); LOG_DEBUG(Debug_GDBStub, "gdb: added {} breakpoint: {:08x} bytes at {:08x}\n", static_cast<int>(type), breakpoint.len, breakpoint.addr); return true; } /// Handle add breakpoint command from gdb client. static void AddBreakpoint() { BreakpointType type; u8 type_id = HexCharToValue(command_buffer[1]); switch (type_id) { case 0: case 1: type = BreakpointType::Execute; break; case 2: type = BreakpointType::Write; break; case 3: type = BreakpointType::Read; break; case 4: type = BreakpointType::Access; break; default: return SendReply("E01"); } auto start_offset = command_buffer + 3; auto addr_pos = std::find(start_offset, command_buffer + command_length, ','); PAddr addr = HexToInt(start_offset, static_cast<u32>(addr_pos - start_offset)); start_offset = addr_pos + 1; u32 len = HexToInt(start_offset, static_cast<u32>((command_buffer + command_length) - start_offset)); if (type == BreakpointType::Access) { // Access is made up of Read and Write types, so add both breakpoints type = BreakpointType::Read; if (!CommitBreakpoint(type, addr, len)) { return SendReply("E02"); } type = BreakpointType::Write; } if (!CommitBreakpoint(type, addr, len)) { return SendReply("E02"); } SendReply("OK"); } /// Handle remove breakpoint command from gdb client. static void RemoveBreakpoint() { BreakpointType type; u8 type_id = HexCharToValue(command_buffer[1]); switch (type_id) { case 0: case 1: type = BreakpointType::Execute; break; case 2: type = BreakpointType::Write; break; case 3: type = BreakpointType::Read; break; case 4: type = BreakpointType::Access; break; default: return SendReply("E01"); } auto start_offset = command_buffer + 3; auto addr_pos = std::find(start_offset, command_buffer + command_length, ','); PAddr addr = HexToInt(start_offset, static_cast<u32>(addr_pos - start_offset)); if (type == BreakpointType::Access) { // Access is made up of Read and Write types, so add both breakpoints type = BreakpointType::Read; RemoveBreakpoint(type, addr); type = BreakpointType::Write; } RemoveBreakpoint(type, addr); SendReply("OK"); } void HandlePacket() { if (!IsConnected()) { return; } if (!IsDataAvailable()) { return; } ReadCommand(); if (command_length == 0) { return; } LOG_DEBUG(Debug_GDBStub, "Packet: {}", command_buffer); switch (command_buffer[0]) { case 'q': HandleQuery(); break; case 'H': HandleSetThread(); break; case '?': SendSignal(latest_signal); break; case 'k': Shutdown(); LOG_INFO(Debug_GDBStub, "killed by gdb"); return; case 'g': ReadRegisters(); break; case 'G': WriteRegisters(); break; case 'p': ReadRegister(); break; case 'P': WriteRegister(); break; case 'm': ReadMemory(); break; case 'M': WriteMemory(); break; case 's': Step(); return; case 'C': case 'c': Continue(); return; case 'z': RemoveBreakpoint(); break; case 'Z': AddBreakpoint(); break; default: SendReply(""); break; } } void SetServerPort(u16 port) { gdbstub_port = port; } void ToggleServer(bool status) { if (status) { server_enabled = status; // Start server if (!IsConnected() && Core::System::GetInstance().IsPoweredOn()) { Init(); } } else { // Stop server if (IsConnected()) { Shutdown(); } server_enabled = status; } } static void Init(u16 port) { if (!server_enabled) { // Set the halt loop to false in case the user enabled the gdbstub mid-execution. // This way the CPU can still execute normally. halt_loop = false; step_loop = false; return; } // Setup initial gdbstub status halt_loop = true; step_loop = false; breakpoints_execute.clear(); breakpoints_read.clear(); breakpoints_write.clear(); // Start gdb server LOG_INFO(Debug_GDBStub, "Starting GDB server on port {}...", port); sockaddr_in saddr_server = {}; saddr_server.sin_family = AF_INET; saddr_server.sin_port = htons(port); saddr_server.sin_addr.s_addr = INADDR_ANY; #ifdef _WIN32 WSAStartup(MAKEWORD(2, 2), &InitData); #endif int tmpsock = static_cast<int>(socket(PF_INET, SOCK_STREAM, 0)); if (tmpsock == -1) { LOG_ERROR(Debug_GDBStub, "Failed to create gdb socket"); } // Set socket to SO_REUSEADDR so it can always bind on the same port int reuse_enabled = 1; if (setsockopt(tmpsock, SOL_SOCKET, SO_REUSEADDR, (const char*)&reuse_enabled, sizeof(reuse_enabled)) < 0) { LOG_ERROR(Debug_GDBStub, "Failed to set gdb socket option"); } const sockaddr* server_addr = reinterpret_cast<const sockaddr*>(&saddr_server); socklen_t server_addrlen = sizeof(saddr_server); if (bind(tmpsock, server_addr, server_addrlen) < 0) { LOG_ERROR(Debug_GDBStub, "Failed to bind gdb socket"); } if (listen(tmpsock, 1) < 0) { LOG_ERROR(Debug_GDBStub, "Failed to listen to gdb socket"); } // Wait for gdb to connect LOG_INFO(Debug_GDBStub, "Waiting for gdb to connect...\n"); sockaddr_in saddr_client; sockaddr* client_addr = reinterpret_cast<sockaddr*>(&saddr_client); socklen_t client_addrlen = sizeof(saddr_client); gdbserver_socket = static_cast<int>(accept(tmpsock, client_addr, &client_addrlen)); if (gdbserver_socket < 0) { // In the case that we couldn't start the server for whatever reason, just start CPU // execution like normal. halt_loop = false; step_loop = false; LOG_ERROR(Debug_GDBStub, "Failed to accept gdb client"); } else { LOG_INFO(Debug_GDBStub, "Client connected.\n"); saddr_client.sin_addr.s_addr = ntohl(saddr_client.sin_addr.s_addr); } // Clean up temporary socket if it's still alive at this point. if (tmpsock != -1) { shutdown(tmpsock, SHUT_RDWR); } } void Init() { Init(gdbstub_port); } void Shutdown() { if (!server_enabled) { return; } LOG_INFO(Debug_GDBStub, "Stopping GDB ..."); if (gdbserver_socket != -1) { shutdown(gdbserver_socket, SHUT_RDWR); gdbserver_socket = -1; } #ifdef _WIN32 WSACleanup(); #endif LOG_INFO(Debug_GDBStub, "GDB stopped."); } bool IsServerEnabled() { return server_enabled; } bool IsConnected() { return IsServerEnabled() && gdbserver_socket != -1; } bool GetCpuHaltFlag() { return halt_loop; } bool GetCpuStepFlag() { return step_loop; } void SetCpuStepFlag(bool is_step) { step_loop = is_step; } }; // namespace GDBStub