// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #pragma once #include <string> #include "common/assert.h" #include "common/common_types.h" #include "core/hle/kernel/kernel.h" #include "core/hle/kernel/thread.h" #include "core/hle/result.h" #include "core/memory.h" namespace IPC { enum DescriptorType : u32 { // Buffer related desciptors types (mask : 0x0F) StaticBuffer = 0x02, PXIBuffer = 0x04, MappedBuffer = 0x08, // Handle related descriptors types (mask : 0x30, but need to check for buffer related // descriptors first ) CopyHandle = 0x00, MoveHandle = 0x10, CallingPid = 0x20, }; /** * @brief Creates a command header to be used for IPC * @param command_id ID of the command to create a header for. * @param normal_params Size of the normal parameters in words. Up to 63. * @param translate_params_size Size of the translate parameters in words. Up to 63. * @return The created IPC header. * * Normal parameters are sent directly to the process while the translate parameters might go * through modifications and checks by the kernel. * The translate parameters are described by headers generated with the IPC::*Desc functions. * * @note While #normal_params is equivalent to the number of normal parameters, * #translate_params_size includes the size occupied by the translate parameters headers. */ constexpr u32 MakeHeader(u16 command_id, unsigned int normal_params, unsigned int translate_params_size) { return (u32(command_id) << 16) | ((u32(normal_params) & 0x3F) << 6) | (u32(translate_params_size) & 0x3F); } union Header { u32 raw; BitField<0, 6, u32> translate_params_size; BitField<6, 6, u32> normal_params; BitField<16, 16, u32> command_id; }; inline Header ParseHeader(u32 header) { return {header}; } constexpr u32 MoveHandleDesc(u32 num_handles = 1) { return MoveHandle | ((num_handles - 1) << 26); } constexpr u32 CopyHandleDesc(u32 num_handles = 1) { return CopyHandle | ((num_handles - 1) << 26); } constexpr u32 CallingPidDesc() { return CallingPid; } constexpr bool isHandleDescriptor(u32 descriptor) { return (descriptor & 0xF) == 0x0; } constexpr u32 HandleNumberFromDesc(u32 handle_descriptor) { return (handle_descriptor >> 26) + 1; } constexpr u32 StaticBufferDesc(u32 size, u8 buffer_id) { return StaticBuffer | (size << 14) | ((buffer_id & 0xF) << 10); } union StaticBufferDescInfo { u32 raw; BitField<10, 4, u32> buffer_id; BitField<14, 18, u32> size; }; inline StaticBufferDescInfo ParseStaticBufferDesc(const u32 desc) { return {desc}; } /** * @brief Creates a header describing a buffer to be sent over PXI. * @param size Size of the buffer. Max 0x00FFFFFF. * @param buffer_id The Id of the buffer. Max 0xF. * @param is_read_only true if the buffer is read-only. If false, the buffer is considered to have * read-write access. * @return The created PXI buffer header. * * The next value is a phys-address of a table located in the BASE memregion. */ inline u32 PXIBufferDesc(u32 size, unsigned buffer_id, bool is_read_only) { u32 type = PXIBuffer; if (is_read_only) type |= 0x2; return type | (size << 8) | ((buffer_id & 0xF) << 4); } enum MappedBufferPermissions { R = 1, W = 2, RW = R | W, }; constexpr u32 MappedBufferDesc(u32 size, MappedBufferPermissions perms) { return MappedBuffer | (size << 4) | (u32(perms) << 1); } union MappedBufferDescInfo { u32 raw; BitField<4, 28, u32> size; BitField<1, 2, MappedBufferPermissions> perms; }; inline MappedBufferDescInfo ParseMappedBufferDesc(const u32 desc) { return {desc}; } inline DescriptorType GetDescriptorType(u32 descriptor) { // Note: Those checks must be done in this order if (isHandleDescriptor(descriptor)) return (DescriptorType)(descriptor & 0x30); // handle the fact that the following descriptors can have rights if (descriptor & MappedBuffer) return MappedBuffer; if (descriptor & PXIBuffer) return PXIBuffer; return StaticBuffer; } } // namespace IPC namespace Kernel { static const int kCommandHeaderOffset = 0x80; ///< Offset into command buffer of header /** * Returns a pointer to the command buffer in the current thread's TLS * TODO(Subv): This is not entirely correct, the command buffer should be copied from * the thread's TLS to an intermediate buffer in kernel memory, and then copied again to * the service handler process' memory. * @param offset Optional offset into command buffer * @return Pointer to command buffer */ inline u32* GetCommandBuffer(const int offset = 0) { return (u32*)Memory::GetPointer(GetCurrentThread()->GetTLSAddress() + kCommandHeaderOffset + offset); } /** * Kernel object representing the client endpoint of an IPC session. Sessions are the basic CTR-OS * primitive for communication between different processes, and are used to implement service calls * to the various system services. * * To make a service call, the client must write the command header and parameters to the buffer * located at offset 0x80 of the TLS (Thread-Local Storage) area, then execute a SendSyncRequest * SVC call with its Session handle. The kernel will read the command header, using it to marshall * the parameters to the process at the server endpoint of the session. After the server replies to * the request, the response is marshalled back to the caller's TLS buffer and control is * transferred back to it. * * In Citra, only the client endpoint is currently implemented and only HLE calls, where the IPC * request is answered by C++ code in the emulator, are supported. When SendSyncRequest is called * with the session handle, this class's SyncRequest method is called, which should read the TLS * buffer and emulate the call accordingly. Since the code can directly read the emulated memory, * no parameter marshalling is done. * * In the long term, this should be turned into the full-fledged IPC mechanism implemented by * CTR-OS so that IPC calls can be optionally handled by the real implementations of processes, as * opposed to HLE simulations. */ class Session : public WaitObject { public: Session(); ~Session() override; std::string GetTypeName() const override { return "Session"; } static const HandleType HANDLE_TYPE = HandleType::Session; HandleType GetHandleType() const override { return HANDLE_TYPE; } /** * Handles a synchronous call to this session using HLE emulation. Emulated <-> emulated calls * aren't supported yet. */ virtual ResultVal<bool> SyncRequest() = 0; // TODO(bunnei): These functions exist to satisfy a hardware test with a Session object // passed into WaitSynchronization. Figure out the meaning of them. bool ShouldWait() override { return true; } void Acquire() override { ASSERT_MSG(!ShouldWait(), "object unavailable!"); } }; }