// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include <array> #include <cstddef> #include <memory> #include <utility> #include "common/assert.h" #include "common/logging/log.h" #include "common/microprofile.h" #include "common/vector_math.h" #include "core/hle/service/gsp/gsp.h" #include "core/hw/gpu.h" #include "core/memory.h" #include "core/tracer/recorder.h" #include "video_core/command_processor.h" #include "video_core/debug_utils/debug_utils.h" #include "video_core/pica_state.h" #include "video_core/pica_types.h" #include "video_core/primitive_assembly.h" #include "video_core/rasterizer_interface.h" #include "video_core/regs.h" #include "video_core/regs_pipeline.h" #include "video_core/regs_texturing.h" #include "video_core/renderer_base.h" #include "video_core/shader/shader.h" #include "video_core/vertex_loader.h" #include "video_core/video_core.h" namespace Pica { namespace CommandProcessor { static int vs_float_regs_counter = 0; static u32 vs_uniform_write_buffer[4]; static int gs_float_regs_counter = 0; static u32 gs_uniform_write_buffer[4]; static int default_attr_counter = 0; static u32 default_attr_write_buffer[3]; // Expand a 4-bit mask to 4-byte mask, e.g. 0b0101 -> 0x00FF00FF static const u32 expand_bits_to_bytes[] = { 0x00000000, 0x000000ff, 0x0000ff00, 0x0000ffff, 0x00ff0000, 0x00ff00ff, 0x00ffff00, 0x00ffffff, 0xff000000, 0xff0000ff, 0xff00ff00, 0xff00ffff, 0xffff0000, 0xffff00ff, 0xffffff00, 0xffffffff, }; MICROPROFILE_DEFINE(GPU_Drawing, "GPU", "Drawing", MP_RGB(50, 50, 240)); static const char* GetShaderSetupTypeName(Shader::ShaderSetup& setup) { if (&setup == &g_state.vs) { return "vertex shader"; } if (&setup == &g_state.gs) { return "geometry shader"; } return "unknown shader"; } static void WriteUniformBoolReg(Shader::ShaderSetup& setup, u32 value) { for (unsigned i = 0; i < setup.uniforms.b.size(); ++i) setup.uniforms.b[i] = (value & (1 << i)) != 0; } static void WriteUniformIntReg(Shader::ShaderSetup& setup, unsigned index, const Math::Vec4<u8>& values) { ASSERT(index < setup.uniforms.i.size()); setup.uniforms.i[index] = values; LOG_TRACE(HW_GPU, "Set {} integer uniform {} to {:02x} {:02x} {:02x} {:02x}", GetShaderSetupTypeName(setup), index, values.x, values.y, values.z, values.w); } static void WriteUniformFloatReg(ShaderRegs& config, Shader::ShaderSetup& setup, int& float_regs_counter, u32 uniform_write_buffer[4], u32 value) { auto& uniform_setup = config.uniform_setup; // TODO: Does actual hardware indeed keep an intermediate buffer or does // it directly write the values? uniform_write_buffer[float_regs_counter++] = value; // Uniforms are written in a packed format such that four float24 values are encoded in // three 32-bit numbers. We write to internal memory once a full such vector is // written. if ((float_regs_counter >= 4 && uniform_setup.IsFloat32()) || (float_regs_counter >= 3 && !uniform_setup.IsFloat32())) { float_regs_counter = 0; auto& uniform = setup.uniforms.f[uniform_setup.index]; if (uniform_setup.index >= 96) { LOG_ERROR(HW_GPU, "Invalid {} float uniform index {}", GetShaderSetupTypeName(setup), (int)uniform_setup.index); } else { // NOTE: The destination component order indeed is "backwards" if (uniform_setup.IsFloat32()) { for (auto i : {0, 1, 2, 3}) uniform[3 - i] = float24::FromFloat32(*(float*)(&uniform_write_buffer[i])); } else { // TODO: Untested uniform.w = float24::FromRaw(uniform_write_buffer[0] >> 8); uniform.z = float24::FromRaw(((uniform_write_buffer[0] & 0xFF) << 16) | ((uniform_write_buffer[1] >> 16) & 0xFFFF)); uniform.y = float24::FromRaw(((uniform_write_buffer[1] & 0xFFFF) << 8) | ((uniform_write_buffer[2] >> 24) & 0xFF)); uniform.x = float24::FromRaw(uniform_write_buffer[2] & 0xFFFFFF); } LOG_TRACE(HW_GPU, "Set {} float uniform {:x} to ({} {} {} {})", GetShaderSetupTypeName(setup), (int)uniform_setup.index, uniform.x.ToFloat32(), uniform.y.ToFloat32(), uniform.z.ToFloat32(), uniform.w.ToFloat32()); // TODO: Verify that this actually modifies the register! uniform_setup.index.Assign(uniform_setup.index + 1); } } } static void WritePicaReg(u32 id, u32 value, u32 mask) { auto& regs = g_state.regs; if (id >= Regs::NUM_REGS) { LOG_ERROR( HW_GPU, "Commandlist tried to write to invalid register 0x{:03X} (value: {:08X}, mask: {:X})", id, value, mask); return; } // TODO: Figure out how register masking acts on e.g. vs.uniform_setup.set_value u32 old_value = regs.reg_array[id]; const u32 write_mask = expand_bits_to_bytes[mask]; regs.reg_array[id] = (old_value & ~write_mask) | (value & write_mask); // Double check for is_pica_tracing to avoid call overhead if (DebugUtils::IsPicaTracing()) { DebugUtils::OnPicaRegWrite({(u16)id, (u16)mask, regs.reg_array[id]}); } if (g_debug_context) g_debug_context->OnEvent(DebugContext::Event::PicaCommandLoaded, reinterpret_cast<void*>(&id)); switch (id) { // Trigger IRQ case PICA_REG_INDEX(trigger_irq): Service::GSP::SignalInterrupt(Service::GSP::InterruptId::P3D); break; case PICA_REG_INDEX(pipeline.triangle_topology): g_state.primitive_assembler.Reconfigure(regs.pipeline.triangle_topology); break; case PICA_REG_INDEX(pipeline.restart_primitive): g_state.primitive_assembler.Reset(); break; case PICA_REG_INDEX(pipeline.vs_default_attributes_setup.index): g_state.immediate.current_attribute = 0; g_state.immediate.reset_geometry_pipeline = true; default_attr_counter = 0; break; // Load default vertex input attributes case PICA_REG_INDEX_WORKAROUND(pipeline.vs_default_attributes_setup.set_value[0], 0x233): case PICA_REG_INDEX_WORKAROUND(pipeline.vs_default_attributes_setup.set_value[1], 0x234): case PICA_REG_INDEX_WORKAROUND(pipeline.vs_default_attributes_setup.set_value[2], 0x235): { // TODO: Does actual hardware indeed keep an intermediate buffer or does // it directly write the values? default_attr_write_buffer[default_attr_counter++] = value; // Default attributes are written in a packed format such that four float24 values are // encoded in // three 32-bit numbers. We write to internal memory once a full such vector is // written. if (default_attr_counter >= 3) { default_attr_counter = 0; auto& setup = regs.pipeline.vs_default_attributes_setup; if (setup.index >= 16) { LOG_ERROR(HW_GPU, "Invalid VS default attribute index {}", (int)setup.index); break; } Math::Vec4<float24> attribute; // NOTE: The destination component order indeed is "backwards" attribute.w = float24::FromRaw(default_attr_write_buffer[0] >> 8); attribute.z = float24::FromRaw(((default_attr_write_buffer[0] & 0xFF) << 16) | ((default_attr_write_buffer[1] >> 16) & 0xFFFF)); attribute.y = float24::FromRaw(((default_attr_write_buffer[1] & 0xFFFF) << 8) | ((default_attr_write_buffer[2] >> 24) & 0xFF)); attribute.x = float24::FromRaw(default_attr_write_buffer[2] & 0xFFFFFF); LOG_TRACE(HW_GPU, "Set default VS attribute {:x} to ({} {} {} {})", (int)setup.index, attribute.x.ToFloat32(), attribute.y.ToFloat32(), attribute.z.ToFloat32(), attribute.w.ToFloat32()); // TODO: Verify that this actually modifies the register! if (setup.index < 15) { g_state.input_default_attributes.attr[setup.index] = attribute; setup.index++; } else { // Put each attribute into an immediate input buffer. When all specified immediate // attributes are present, the Vertex Shader is invoked and everything is sent to // the primitive assembler. auto& immediate_input = g_state.immediate.input_vertex; auto& immediate_attribute_id = g_state.immediate.current_attribute; immediate_input.attr[immediate_attribute_id] = attribute; if (immediate_attribute_id < regs.pipeline.max_input_attrib_index) { immediate_attribute_id += 1; } else { MICROPROFILE_SCOPE(GPU_Drawing); immediate_attribute_id = 0; Shader::OutputVertex::ValidateSemantics(regs.rasterizer); auto* shader_engine = Shader::GetEngine(); shader_engine->SetupBatch(g_state.vs, regs.vs.main_offset); // Send to vertex shader if (g_debug_context) g_debug_context->OnEvent(DebugContext::Event::VertexShaderInvocation, static_cast<void*>(&immediate_input)); Shader::UnitState shader_unit; Shader::AttributeBuffer output{}; shader_unit.LoadInput(regs.vs, immediate_input); shader_engine->Run(g_state.vs, shader_unit); shader_unit.WriteOutput(regs.vs, output); // Send to geometry pipeline if (g_state.immediate.reset_geometry_pipeline) { g_state.geometry_pipeline.Reconfigure(); g_state.immediate.reset_geometry_pipeline = false; } ASSERT(!g_state.geometry_pipeline.NeedIndexInput()); g_state.geometry_pipeline.Setup(shader_engine); g_state.geometry_pipeline.SubmitVertex(output); // TODO: If drawing after every immediate mode triangle kills performance, // change it to flush triangles whenever a drawing config register changes // See: https://github.com/citra-emu/citra/pull/2866#issuecomment-327011550 VideoCore::g_renderer->Rasterizer()->DrawTriangles(); if (g_debug_context) { g_debug_context->OnEvent(DebugContext::Event::FinishedPrimitiveBatch, nullptr); } } } } break; } case PICA_REG_INDEX(pipeline.gpu_mode): // This register likely just enables vertex processing and doesn't need any special handling break; case PICA_REG_INDEX_WORKAROUND(pipeline.command_buffer.trigger[0], 0x23c): case PICA_REG_INDEX_WORKAROUND(pipeline.command_buffer.trigger[1], 0x23d): { unsigned index = static_cast<unsigned>(id - PICA_REG_INDEX(pipeline.command_buffer.trigger[0])); u32* head_ptr = (u32*)Memory::GetPhysicalPointer( regs.pipeline.command_buffer.GetPhysicalAddress(index)); g_state.cmd_list.head_ptr = g_state.cmd_list.current_ptr = head_ptr; g_state.cmd_list.length = regs.pipeline.command_buffer.GetSize(index) / sizeof(u32); break; } // It seems like these trigger vertex rendering case PICA_REG_INDEX(pipeline.trigger_draw): case PICA_REG_INDEX(pipeline.trigger_draw_indexed): { MICROPROFILE_SCOPE(GPU_Drawing); #if PICA_LOG_TEV DebugUtils::DumpTevStageConfig(regs.GetTevStages()); #endif if (g_debug_context) g_debug_context->OnEvent(DebugContext::Event::IncomingPrimitiveBatch, nullptr); PrimitiveAssembler<Shader::OutputVertex>& primitive_assembler = g_state.primitive_assembler; bool accelerate_draw = VideoCore::g_hw_shader_enabled && primitive_assembler.IsEmpty(); if (regs.pipeline.use_gs == PipelineRegs::UseGS::No) { auto topology = primitive_assembler.GetTopology(); if (topology == PipelineRegs::TriangleTopology::Shader || topology == PipelineRegs::TriangleTopology::List) { accelerate_draw = accelerate_draw && (regs.pipeline.num_vertices % 3) == 0; } // TODO (wwylele): for Strip/Fan topology, if the primitive assember is not restarted // after this draw call, the buffered vertex from this draw should "leak" to the next // draw, in which case we should buffer the vertex into the software primitive assember, // or disable accelerate draw completely. However, there is not game found yet that does // this, so this is left unimplemented for now. Revisit this when an issue is found in // games. } else { if (VideoCore::g_hw_shader_accurate_gs) { accelerate_draw = false; } } bool is_indexed = (id == PICA_REG_INDEX(pipeline.trigger_draw_indexed)); if (accelerate_draw && VideoCore::g_renderer->Rasterizer()->AccelerateDrawBatch(is_indexed)) { if (g_debug_context) { g_debug_context->OnEvent(DebugContext::Event::FinishedPrimitiveBatch, nullptr); } break; } // Processes information about internal vertex attributes to figure out how a vertex is // loaded. // Later, these can be compiled and cached. const u32 base_address = regs.pipeline.vertex_attributes.GetPhysicalBaseAddress(); VertexLoader loader(regs.pipeline); Shader::OutputVertex::ValidateSemantics(regs.rasterizer); // Load vertices const auto& index_info = regs.pipeline.index_array; const u8* index_address_8 = Memory::GetPhysicalPointer(base_address + index_info.offset); const u16* index_address_16 = reinterpret_cast<const u16*>(index_address_8); bool index_u16 = index_info.format != 0; if (g_debug_context && g_debug_context->recorder) { for (int i = 0; i < 3; ++i) { const auto texture = regs.texturing.GetTextures()[i]; if (!texture.enabled) continue; u8* texture_data = Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress()); g_debug_context->recorder->MemoryAccessed( texture_data, Pica::TexturingRegs::NibblesPerPixel(texture.format) * texture.config.width / 2 * texture.config.height, texture.config.GetPhysicalAddress()); } } DebugUtils::MemoryAccessTracker memory_accesses; // Simple circular-replacement vertex cache // The size has been tuned for optimal balance between hit-rate and the cost of lookup const size_t VERTEX_CACHE_SIZE = 32; std::array<bool, VERTEX_CACHE_SIZE> vertex_cache_valid{}; std::array<u16, VERTEX_CACHE_SIZE> vertex_cache_ids; std::array<Shader::AttributeBuffer, VERTEX_CACHE_SIZE> vertex_cache; Shader::AttributeBuffer vs_output; unsigned int vertex_cache_pos = 0; auto* shader_engine = Shader::GetEngine(); Shader::UnitState shader_unit; shader_engine->SetupBatch(g_state.vs, regs.vs.main_offset); g_state.geometry_pipeline.Reconfigure(); g_state.geometry_pipeline.Setup(shader_engine); if (g_state.geometry_pipeline.NeedIndexInput()) ASSERT(is_indexed); for (unsigned int index = 0; index < regs.pipeline.num_vertices; ++index) { // Indexed rendering doesn't use the start offset unsigned int vertex = is_indexed ? (index_u16 ? index_address_16[index] : index_address_8[index]) : (index + regs.pipeline.vertex_offset); bool vertex_cache_hit = false; if (is_indexed) { if (g_state.geometry_pipeline.NeedIndexInput()) { g_state.geometry_pipeline.SubmitIndex(vertex); continue; } if (g_debug_context && Pica::g_debug_context->recorder) { int size = index_u16 ? 2 : 1; memory_accesses.AddAccess(base_address + index_info.offset + size * index, size); } for (unsigned int i = 0; i < VERTEX_CACHE_SIZE; ++i) { if (vertex_cache_valid[i] && vertex == vertex_cache_ids[i]) { vs_output = vertex_cache[i]; vertex_cache_hit = true; break; } } } if (!vertex_cache_hit) { // Initialize data for the current vertex Shader::AttributeBuffer input; loader.LoadVertex(base_address, index, vertex, input, memory_accesses); // Send to vertex shader if (g_debug_context) g_debug_context->OnEvent(DebugContext::Event::VertexShaderInvocation, (void*)&input); shader_unit.LoadInput(regs.vs, input); shader_engine->Run(g_state.vs, shader_unit); shader_unit.WriteOutput(regs.vs, vs_output); if (is_indexed) { vertex_cache[vertex_cache_pos] = vs_output; vertex_cache_valid[vertex_cache_pos] = true; vertex_cache_ids[vertex_cache_pos] = vertex; vertex_cache_pos = (vertex_cache_pos + 1) % VERTEX_CACHE_SIZE; } } // Send to geometry pipeline g_state.geometry_pipeline.SubmitVertex(vs_output); } for (auto& range : memory_accesses.ranges) { g_debug_context->recorder->MemoryAccessed(Memory::GetPhysicalPointer(range.first), range.second, range.first); } VideoCore::g_renderer->Rasterizer()->DrawTriangles(); if (g_debug_context) { g_debug_context->OnEvent(DebugContext::Event::FinishedPrimitiveBatch, nullptr); } break; } case PICA_REG_INDEX(gs.bool_uniforms): WriteUniformBoolReg(g_state.gs, g_state.regs.gs.bool_uniforms.Value()); break; case PICA_REG_INDEX_WORKAROUND(gs.int_uniforms[0], 0x281): case PICA_REG_INDEX_WORKAROUND(gs.int_uniforms[1], 0x282): case PICA_REG_INDEX_WORKAROUND(gs.int_uniforms[2], 0x283): case PICA_REG_INDEX_WORKAROUND(gs.int_uniforms[3], 0x284): { unsigned index = (id - PICA_REG_INDEX_WORKAROUND(gs.int_uniforms[0], 0x281)); auto values = regs.gs.int_uniforms[index]; WriteUniformIntReg(g_state.gs, index, Math::Vec4<u8>(values.x, values.y, values.z, values.w)); break; } case PICA_REG_INDEX_WORKAROUND(gs.uniform_setup.set_value[0], 0x291): case PICA_REG_INDEX_WORKAROUND(gs.uniform_setup.set_value[1], 0x292): case PICA_REG_INDEX_WORKAROUND(gs.uniform_setup.set_value[2], 0x293): case PICA_REG_INDEX_WORKAROUND(gs.uniform_setup.set_value[3], 0x294): case PICA_REG_INDEX_WORKAROUND(gs.uniform_setup.set_value[4], 0x295): case PICA_REG_INDEX_WORKAROUND(gs.uniform_setup.set_value[5], 0x296): case PICA_REG_INDEX_WORKAROUND(gs.uniform_setup.set_value[6], 0x297): case PICA_REG_INDEX_WORKAROUND(gs.uniform_setup.set_value[7], 0x298): { WriteUniformFloatReg(g_state.regs.gs, g_state.gs, gs_float_regs_counter, gs_uniform_write_buffer, value); break; } case PICA_REG_INDEX_WORKAROUND(gs.program.set_word[0], 0x29c): case PICA_REG_INDEX_WORKAROUND(gs.program.set_word[1], 0x29d): case PICA_REG_INDEX_WORKAROUND(gs.program.set_word[2], 0x29e): case PICA_REG_INDEX_WORKAROUND(gs.program.set_word[3], 0x29f): case PICA_REG_INDEX_WORKAROUND(gs.program.set_word[4], 0x2a0): case PICA_REG_INDEX_WORKAROUND(gs.program.set_word[5], 0x2a1): case PICA_REG_INDEX_WORKAROUND(gs.program.set_word[6], 0x2a2): case PICA_REG_INDEX_WORKAROUND(gs.program.set_word[7], 0x2a3): { u32& offset = g_state.regs.gs.program.offset; if (offset >= 4096) { LOG_ERROR(HW_GPU, "Invalid GS program offset {}", offset); } else { g_state.gs.program_code[offset] = value; g_state.gs.MarkProgramCodeDirty(); offset++; } break; } case PICA_REG_INDEX_WORKAROUND(gs.swizzle_patterns.set_word[0], 0x2a6): case PICA_REG_INDEX_WORKAROUND(gs.swizzle_patterns.set_word[1], 0x2a7): case PICA_REG_INDEX_WORKAROUND(gs.swizzle_patterns.set_word[2], 0x2a8): case PICA_REG_INDEX_WORKAROUND(gs.swizzle_patterns.set_word[3], 0x2a9): case PICA_REG_INDEX_WORKAROUND(gs.swizzle_patterns.set_word[4], 0x2aa): case PICA_REG_INDEX_WORKAROUND(gs.swizzle_patterns.set_word[5], 0x2ab): case PICA_REG_INDEX_WORKAROUND(gs.swizzle_patterns.set_word[6], 0x2ac): case PICA_REG_INDEX_WORKAROUND(gs.swizzle_patterns.set_word[7], 0x2ad): { u32& offset = g_state.regs.gs.swizzle_patterns.offset; if (offset >= g_state.gs.swizzle_data.size()) { LOG_ERROR(HW_GPU, "Invalid GS swizzle pattern offset {}", offset); } else { g_state.gs.swizzle_data[offset] = value; g_state.gs.MarkSwizzleDataDirty(); offset++; } break; } case PICA_REG_INDEX(vs.bool_uniforms): // TODO (wwylele): does regs.pipeline.gs_unit_exclusive_configuration affect this? WriteUniformBoolReg(g_state.vs, g_state.regs.vs.bool_uniforms.Value()); break; case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[0], 0x2b1): case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[1], 0x2b2): case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[2], 0x2b3): case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[3], 0x2b4): { // TODO (wwylele): does regs.pipeline.gs_unit_exclusive_configuration affect this? unsigned index = (id - PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[0], 0x2b1)); auto values = regs.vs.int_uniforms[index]; WriteUniformIntReg(g_state.vs, index, Math::Vec4<u8>(values.x, values.y, values.z, values.w)); break; } case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[0], 0x2c1): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[1], 0x2c2): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[2], 0x2c3): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[3], 0x2c4): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[4], 0x2c5): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[5], 0x2c6): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[6], 0x2c7): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[7], 0x2c8): { // TODO (wwylele): does regs.pipeline.gs_unit_exclusive_configuration affect this? WriteUniformFloatReg(g_state.regs.vs, g_state.vs, vs_float_regs_counter, vs_uniform_write_buffer, value); break; } case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[0], 0x2cc): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[1], 0x2cd): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[2], 0x2ce): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[3], 0x2cf): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[4], 0x2d0): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[5], 0x2d1): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[6], 0x2d2): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[7], 0x2d3): { u32& offset = g_state.regs.vs.program.offset; if (offset >= 512) { LOG_ERROR(HW_GPU, "Invalid VS program offset {}", offset); } else { g_state.vs.program_code[offset] = value; g_state.vs.MarkProgramCodeDirty(); if (!g_state.regs.pipeline.gs_unit_exclusive_configuration) { g_state.gs.program_code[offset] = value; g_state.gs.MarkProgramCodeDirty(); } offset++; } break; } case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[0], 0x2d6): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[1], 0x2d7): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[2], 0x2d8): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[3], 0x2d9): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[4], 0x2da): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[5], 0x2db): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[6], 0x2dc): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[7], 0x2dd): { u32& offset = g_state.regs.vs.swizzle_patterns.offset; if (offset >= g_state.vs.swizzle_data.size()) { LOG_ERROR(HW_GPU, "Invalid VS swizzle pattern offset {}", offset); } else { g_state.vs.swizzle_data[offset] = value; g_state.vs.MarkSwizzleDataDirty(); if (!g_state.regs.pipeline.gs_unit_exclusive_configuration) { g_state.gs.swizzle_data[offset] = value; g_state.gs.MarkSwizzleDataDirty(); } offset++; } break; } case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[0], 0x1c8): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[1], 0x1c9): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[2], 0x1ca): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[3], 0x1cb): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[4], 0x1cc): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[5], 0x1cd): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[6], 0x1ce): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[7], 0x1cf): { auto& lut_config = regs.lighting.lut_config; ASSERT_MSG(lut_config.index < 256, "lut_config.index exceeded maximum value of 255!"); g_state.lighting.luts[lut_config.type][lut_config.index].raw = value; lut_config.index.Assign(lut_config.index + 1); break; } case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[0], 0xe8): case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[1], 0xe9): case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[2], 0xea): case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[3], 0xeb): case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[4], 0xec): case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[5], 0xed): case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[6], 0xee): case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[7], 0xef): { g_state.fog.lut[regs.texturing.fog_lut_offset % 128].raw = value; regs.texturing.fog_lut_offset.Assign(regs.texturing.fog_lut_offset + 1); break; } case PICA_REG_INDEX_WORKAROUND(texturing.proctex_lut_data[0], 0xb0): case PICA_REG_INDEX_WORKAROUND(texturing.proctex_lut_data[1], 0xb1): case PICA_REG_INDEX_WORKAROUND(texturing.proctex_lut_data[2], 0xb2): case PICA_REG_INDEX_WORKAROUND(texturing.proctex_lut_data[3], 0xb3): case PICA_REG_INDEX_WORKAROUND(texturing.proctex_lut_data[4], 0xb4): case PICA_REG_INDEX_WORKAROUND(texturing.proctex_lut_data[5], 0xb5): case PICA_REG_INDEX_WORKAROUND(texturing.proctex_lut_data[6], 0xb6): case PICA_REG_INDEX_WORKAROUND(texturing.proctex_lut_data[7], 0xb7): { auto& index = regs.texturing.proctex_lut_config.index; auto& pt = g_state.proctex; switch (regs.texturing.proctex_lut_config.ref_table.Value()) { case TexturingRegs::ProcTexLutTable::Noise: pt.noise_table[index % pt.noise_table.size()].raw = value; break; case TexturingRegs::ProcTexLutTable::ColorMap: pt.color_map_table[index % pt.color_map_table.size()].raw = value; break; case TexturingRegs::ProcTexLutTable::AlphaMap: pt.alpha_map_table[index % pt.alpha_map_table.size()].raw = value; break; case TexturingRegs::ProcTexLutTable::Color: pt.color_table[index % pt.color_table.size()].raw = value; break; case TexturingRegs::ProcTexLutTable::ColorDiff: pt.color_diff_table[index % pt.color_diff_table.size()].raw = value; break; } index.Assign(index + 1); break; } default: break; } VideoCore::g_renderer->Rasterizer()->NotifyPicaRegisterChanged(id); if (g_debug_context) g_debug_context->OnEvent(DebugContext::Event::PicaCommandProcessed, reinterpret_cast<void*>(&id)); } void ProcessCommandList(const u32* list, u32 size) { g_state.cmd_list.head_ptr = g_state.cmd_list.current_ptr = list; g_state.cmd_list.length = size / sizeof(u32); while (g_state.cmd_list.current_ptr < g_state.cmd_list.head_ptr + g_state.cmd_list.length) { // Align read pointer to 8 bytes if ((g_state.cmd_list.head_ptr - g_state.cmd_list.current_ptr) % 2 != 0) ++g_state.cmd_list.current_ptr; u32 value = *g_state.cmd_list.current_ptr++; const CommandHeader header = {*g_state.cmd_list.current_ptr++}; WritePicaReg(header.cmd_id, value, header.parameter_mask); for (unsigned i = 0; i < header.extra_data_length; ++i) { u32 cmd = header.cmd_id + (header.group_commands ? i + 1 : 0); WritePicaReg(cmd, *g_state.cmd_list.current_ptr++, header.parameter_mask); } } } } // namespace CommandProcessor } // namespace Pica