// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include <algorithm> #include <array> #include <cstddef> #include <memory> #include "common/assert.h" #include "common/color.h" #include "common/common_types.h" #include "common/math_util.h" #include "common/vector_math.h" #include "core/hle/service/y2r_u.h" #include "core/hw/y2r.h" #include "core/memory.h" namespace HW { namespace Y2R { using namespace Y2R_U; static const size_t MAX_TILES = 1024 / 8; static const size_t TILE_SIZE = 8 * 8; using ImageTile = std::array<u32, TILE_SIZE>; /// Converts a image strip from the source YUV format into individual 8x8 RGB32 tiles. static void ConvertYUVToRGB(InputFormat input_format, const u8* input_Y, const u8* input_U, const u8* input_V, ImageTile output[], unsigned int width, unsigned int height, const CoefficientSet& coefficients) { for (unsigned int y = 0; y < height; ++y) { for (unsigned int x = 0; x < width; ++x) { s32 Y = 0; s32 U = 0; s32 V = 0; switch (input_format) { case InputFormat::YUV422_Indiv8: case InputFormat::YUV422_Indiv16: Y = input_Y[y * width + x]; U = input_U[(y * width + x) / 2]; V = input_V[(y * width + x) / 2]; break; case InputFormat::YUV420_Indiv8: case InputFormat::YUV420_Indiv16: Y = input_Y[y * width + x]; U = input_U[((y / 2) * width + x) / 2]; V = input_V[((y / 2) * width + x) / 2]; break; case InputFormat::YUYV422_Interleaved: Y = input_Y[(y * width + x) * 2]; U = input_Y[(y * width + (x / 2) * 2) * 2 + 1]; V = input_Y[(y * width + (x / 2) * 2) * 2 + 3]; break; } // This conversion process is bit-exact with hardware, as far as could be tested. auto& c = coefficients; s32 cY = c[0]*Y; s32 r = cY + c[1]*V; s32 g = cY - c[3]*U - c[2]*V; s32 b = cY + c[4]*U; const s32 rounding_offset = 0x18; r = (r >> 3) + c[5] + rounding_offset; g = (g >> 3) + c[6] + rounding_offset; b = (b >> 3) + c[7] + rounding_offset; unsigned int tile = x / 8; unsigned int tile_x = x % 8; u32* out = &output[tile][y * 8 + tile_x]; using MathUtil::Clamp; *out = ((u32)Clamp(r >> 5, 0, 0xFF) << 24) | ((u32)Clamp(g >> 5, 0, 0xFF) << 16) | ((u32)Clamp(b >> 5, 0, 0xFF) << 8); } } } /// Simulates an incoming CDMA transfer. The N parameter is used to automatically convert 16-bit formats to 8-bit. template <size_t N> static void ReceiveData(u8* output, ConversionBuffer& buf, size_t amount_of_data) { const u8* input = Memory::GetPointer(buf.address); size_t output_unit = buf.transfer_unit / N; ASSERT(amount_of_data % output_unit == 0); while (amount_of_data > 0) { for (size_t i = 0; i < output_unit; ++i) { output[i] = input[i * N]; } output += output_unit; input += buf.transfer_unit + buf.gap; buf.address += buf.transfer_unit + buf.gap; buf.image_size -= buf.transfer_unit; amount_of_data -= output_unit; } } /// Convert intermediate RGB32 format to the final output format while simulating an outgoing CDMA transfer. static void SendData(const u32* input, ConversionBuffer& buf, int amount_of_data, OutputFormat output_format, u8 alpha) { u8* output = Memory::GetPointer(buf.address); while (amount_of_data > 0) { u8* unit_end = output + buf.transfer_unit; while (output < unit_end) { u32 color = *input++; Math::Vec4<u8> col_vec{ (u8)(color >> 24), (u8)(color >> 16), (u8)(color >> 8), alpha }; switch (output_format) { case OutputFormat::RGBA8: Color::EncodeRGBA8(col_vec, output); output += 4; break; case OutputFormat::RGB8: Color::EncodeRGB8(col_vec, output); output += 3; break; case OutputFormat::RGB5A1: Color::EncodeRGB5A1(col_vec, output); output += 2; break; case OutputFormat::RGB565: Color::EncodeRGB565(col_vec, output); output += 2; break; } amount_of_data -= 1; } output += buf.gap; buf.address += buf.transfer_unit + buf.gap; buf.image_size -= buf.transfer_unit; } } static const u8 linear_lut[64] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, }; static const u8 morton_lut[64] = { 0, 1, 4, 5, 16, 17, 20, 21, 2, 3, 6, 7, 18, 19, 22, 23, 8, 9, 12, 13, 24, 25, 28, 29, 10, 11, 14, 15, 26, 27, 30, 31, 32, 33, 36, 37, 48, 49, 52, 53, 34, 35, 38, 39, 50, 51, 54, 55, 40, 41, 44, 45, 56, 57, 60, 61, 42, 43, 46, 47, 58, 59, 62, 63, }; static void RotateTile0(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) { for (int i = 0; i < height * 8; ++i) { output[out_map[i]] = input[i]; } } static void RotateTile90(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) { int out_i = 0; for (int x = 0; x < 8; ++x) { for (int y = height - 1; y >= 0; --y) { output[out_map[out_i++]] = input[y * 8 + x]; } } } static void RotateTile180(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) { int out_i = 0; for (int i = height * 8 - 1; i >= 0; --i) { output[out_map[out_i++]] = input[i]; } } static void RotateTile270(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) { int out_i = 0; for (int x = 8-1; x >= 0; --x) { for (int y = 0; y < height; ++y) { output[out_map[out_i++]] = input[y * 8 + x]; } } } static void WriteTileToOutput(u32* output, const ImageTile& tile, int height, int line_stride) { for (int y = 0; y < height; ++y) { for (int x = 0; x < 8; ++x) { output[y * line_stride + x] = tile[y * 8 + x]; } } } /** * Performs a Y2R colorspace conversion. * * The Y2R hardware implements hardware-accelerated YUV to RGB colorspace conversions. It is most * commonly used for video playback or to display camera input to the screen. * * The conversion process is quite configurable, and can be divided in distinct steps. From * observation, it appears that the hardware buffers a single 8-pixel tall strip of image data * internally and converts it in one go before writing to the output and loading the next strip. * * The steps taken to convert one strip of image data are: * * - The hardware receives data via CDMA (http://3dbrew.org/wiki/Corelink_DMA_Engines), which is * presumably stored in one or more internal buffers. This process can be done in several separate * transfers, as long as they don't exceed the size of the internal image buffer. This allows * flexibility in input strides. * - The input data is decoded into a YUV tuple. Several formats are suported, see the `InputFormat` * enum. * - The YUV tuple is converted, using fixed point calculations, to RGB. This step can be configured * using a set of coefficients to support different colorspace standards. See `CoefficientSet`. * - The strip can be optionally rotated 90, 180 or 270 degrees. Since each strip is processed * independently, this notably rotates each *strip*, not the entire image. This means that for 90 * or 270 degree rotations, the output will be in terms of several 8 x height images, and for any * non-zero rotation the strips will have to be re-arranged so that the parts of the image will * not be shuffled together. This limitation makes this a feature of somewhat dubious utility. 90 * or 270 degree rotations in images with non-even height don't seem to work properly. * - The data is converted to the output RGB format. See the `OutputFormat` enum. * - The data can be output either linearly line-by-line or in the swizzled 8x8 tile format used by * the PICA. This is decided by the `BlockAlignment` enum. If 8x8 alignment is used, then the * image must have a height divisible by 8. The image width must always be divisible by 8. * - The final data is then CDMAed out to main memory and the next image strip is processed. This * offers the same flexibility as the input stage. * * In this implementation, to avoid the combinatorial explosion of parameter combinations, common * intermediate formats are used and where possible tables or parameters are used instead of * diverging code paths to keep the amount of branches in check. Some steps are also merged to * increase efficiency. * * Output for all valid settings combinations matches hardware, however output in some edge-cases * differs: * * - `Block8x8` alignment with non-mod8 height produces different garbage patterns on the last * strip, especially when combined with rotation. * - Hardware, when using `Linear` alignment with a non-even height and 90 or 270 degree rotation * produces misaligned output on the last strip. This implmentation produces output with the * correct "expected" alignment. * * Hardware behaves strangely (doesn't fire the completion interrupt, for example) in these cases, * so they are believed to be invalid configurations anyway. */ void PerformConversion(ConversionConfiguration& cvt) { ASSERT(cvt.input_line_width % 8 == 0); ASSERT(cvt.block_alignment != BlockAlignment::Block8x8 || cvt.input_lines % 8 == 0); // Tiles per row size_t num_tiles = cvt.input_line_width / 8; ASSERT(num_tiles <= MAX_TILES); // Buffer used as a CDMA source/target. std::unique_ptr<u8[]> data_buffer(new u8[cvt.input_line_width * 8 * 4]); // Intermediate storage for decoded 8x8 image tiles. Always stored as RGB32. std::unique_ptr<ImageTile[]> tiles(new ImageTile[num_tiles]); ImageTile tmp_tile; // LUT used to remap writes to a tile. Used to allow linear or swizzled output without // requiring two different code paths. const u8* tile_remap = nullptr; switch (cvt.block_alignment) { case BlockAlignment::Linear: tile_remap = linear_lut; break; case BlockAlignment::Block8x8: tile_remap = morton_lut; break; } for (unsigned int y = 0; y < cvt.input_lines; y += 8) { unsigned int row_height = std::min(cvt.input_lines - y, 8u); // Total size in pixels of incoming data required for this strip. const size_t row_data_size = row_height * cvt.input_line_width; u8* input_Y = data_buffer.get(); u8* input_U = input_Y + 8 * cvt.input_line_width; u8* input_V = input_U + 8 * cvt.input_line_width / 2; switch (cvt.input_format) { case InputFormat::YUV422_Indiv8: ReceiveData<1>(input_Y, cvt.src_Y, row_data_size); ReceiveData<1>(input_U, cvt.src_U, row_data_size / 2); ReceiveData<1>(input_V, cvt.src_V, row_data_size / 2); break; case InputFormat::YUV420_Indiv8: ReceiveData<1>(input_Y, cvt.src_Y, row_data_size); ReceiveData<1>(input_U, cvt.src_U, row_data_size / 4); ReceiveData<1>(input_V, cvt.src_V, row_data_size / 4); break; case InputFormat::YUV422_Indiv16: ReceiveData<2>(input_Y, cvt.src_Y, row_data_size); ReceiveData<2>(input_U, cvt.src_U, row_data_size / 2); ReceiveData<2>(input_V, cvt.src_V, row_data_size / 2); break; case InputFormat::YUV420_Indiv16: ReceiveData<2>(input_Y, cvt.src_Y, row_data_size); ReceiveData<2>(input_U, cvt.src_U, row_data_size / 4); ReceiveData<2>(input_V, cvt.src_V, row_data_size / 4); break; case InputFormat::YUYV422_Interleaved: input_U = nullptr; input_V = nullptr; ReceiveData<1>(input_Y, cvt.src_YUYV, row_data_size * 2); break; } // Note(yuriks): If additional optimization is required, input_format can be moved to a // template parameter, so that its dispatch can be moved to outside the inner loop. ConvertYUVToRGB(cvt.input_format, input_Y, input_U, input_V, tiles.get(), cvt.input_line_width, row_height, cvt.coefficients); u32* output_buffer = reinterpret_cast<u32*>(data_buffer.get()); for (size_t i = 0; i < num_tiles; ++i) { int image_strip_width = 0; int output_stride = 0; switch (cvt.rotation) { case Rotation::None: RotateTile0(tiles[i], tmp_tile, row_height, tile_remap); image_strip_width = cvt.input_line_width; output_stride = 8; break; case Rotation::Clockwise_90: RotateTile90(tiles[i], tmp_tile, row_height, tile_remap); image_strip_width = 8; output_stride = 8 * row_height; break; case Rotation::Clockwise_180: // For 180 and 270 degree rotations we also invert the order of tiles in the strip, // since the rotates are done individually on each tile. RotateTile180(tiles[num_tiles - i - 1], tmp_tile, row_height, tile_remap); image_strip_width = cvt.input_line_width; output_stride = 8; break; case Rotation::Clockwise_270: RotateTile270(tiles[num_tiles - i - 1], tmp_tile, row_height, tile_remap); image_strip_width = 8; output_stride = 8 * row_height; break; } switch (cvt.block_alignment) { case BlockAlignment::Linear: WriteTileToOutput(output_buffer, tmp_tile, row_height, image_strip_width); output_buffer += output_stride; break; case BlockAlignment::Block8x8: WriteTileToOutput(output_buffer, tmp_tile, 8, 8); output_buffer += TILE_SIZE; break; } } // Note(yuriks): If additional optimization is required, output_format can be moved to a // template parameter, so that its dispatch can be moved to outside the inner loop. SendData(reinterpret_cast<u32*>(data_buffer.get()), cvt.dst, (int)row_data_size, cvt.output_format, (u8)cvt.alpha); } } } }