mirror of
https://github.com/starr-dusT/citra.git
synced 2024-10-02 10:26:17 -07:00
200 lines
7.3 KiB
C++
200 lines
7.3 KiB
C++
// Copyright 2016 Dolphin Emulator Project / 2017 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <catch2/catch_test_macros.hpp>
|
|
|
|
#include <array>
|
|
#include <bitset>
|
|
#include <string>
|
|
#include "common/file_util.h"
|
|
#include "core/core.h"
|
|
#include "core/core_timing.h"
|
|
|
|
// Numbers are chosen randomly to make sure the correct one is given.
|
|
static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
|
|
static constexpr int MAX_SLICE_LENGTH =
|
|
BASE_CLOCK_RATE_ARM11 / 234; // Copied from CoreTiming internals
|
|
|
|
static std::bitset<CB_IDS.size()> callbacks_ran_flags;
|
|
static u64 expected_callback = 0;
|
|
static s64 lateness = 0;
|
|
|
|
template <unsigned int IDX>
|
|
void CallbackTemplate(std::uintptr_t user_data, s64 cycles_late) {
|
|
static_assert(IDX < CB_IDS.size(), "IDX out of range");
|
|
callbacks_ran_flags.set(IDX);
|
|
REQUIRE(CB_IDS[IDX] == user_data);
|
|
REQUIRE(CB_IDS[IDX] == expected_callback);
|
|
REQUIRE(lateness == cycles_late);
|
|
}
|
|
|
|
static void AdvanceAndCheck(Core::Timing& timing, u32 idx, int downcount, int expected_lateness = 0,
|
|
int cpu_downcount = 0) {
|
|
callbacks_ran_flags = 0;
|
|
expected_callback = CB_IDS[idx];
|
|
lateness = expected_lateness;
|
|
|
|
timing.GetTimer(0)->AddTicks(timing.GetTimer(0)->GetDowncount() -
|
|
cpu_downcount); // Pretend we executed X cycles of instructions.
|
|
|
|
timing.GetTimer(0)->Advance();
|
|
timing.GetTimer(0)->SetNextSlice();
|
|
|
|
REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags);
|
|
REQUIRE(downcount == timing.GetTimer(0)->GetDowncount());
|
|
}
|
|
|
|
TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
|
|
Core::Timing timing(1, 100);
|
|
|
|
Core::TimingEventType* cb_a = timing.RegisterEvent("callbackA", CallbackTemplate<0>);
|
|
Core::TimingEventType* cb_b = timing.RegisterEvent("callbackB", CallbackTemplate<1>);
|
|
Core::TimingEventType* cb_c = timing.RegisterEvent("callbackC", CallbackTemplate<2>);
|
|
Core::TimingEventType* cb_d = timing.RegisterEvent("callbackD", CallbackTemplate<3>);
|
|
Core::TimingEventType* cb_e = timing.RegisterEvent("callbackE", CallbackTemplate<4>);
|
|
|
|
// Enter slice 0
|
|
timing.GetTimer(0)->Advance();
|
|
timing.GetTimer(0)->SetNextSlice();
|
|
|
|
// D -> B -> C -> A -> E
|
|
timing.ScheduleEvent(1000, cb_a, CB_IDS[0], 0);
|
|
REQUIRE(1000 == timing.GetTimer(0)->GetDowncount());
|
|
timing.ScheduleEvent(500, cb_b, CB_IDS[1], 0);
|
|
REQUIRE(500 == timing.GetTimer(0)->GetDowncount());
|
|
timing.ScheduleEvent(800, cb_c, CB_IDS[2], 0);
|
|
REQUIRE(500 == timing.GetTimer(0)->GetDowncount());
|
|
timing.ScheduleEvent(100, cb_d, CB_IDS[3], 0);
|
|
REQUIRE(100 == timing.GetTimer(0)->GetDowncount());
|
|
timing.ScheduleEvent(1200, cb_e, CB_IDS[4], 0);
|
|
REQUIRE(100 == timing.GetTimer(0)->GetDowncount());
|
|
|
|
AdvanceAndCheck(timing, 3, 400);
|
|
AdvanceAndCheck(timing, 1, 300);
|
|
AdvanceAndCheck(timing, 2, 200);
|
|
AdvanceAndCheck(timing, 0, 200);
|
|
AdvanceAndCheck(timing, 4, MAX_SLICE_LENGTH);
|
|
}
|
|
|
|
namespace SharedSlotTest {
|
|
static unsigned int counter = 0;
|
|
|
|
template <unsigned int ID>
|
|
void FifoCallback(std::uintptr_t user_data, s64 cycles_late) {
|
|
static_assert(ID < CB_IDS.size(), "ID out of range");
|
|
callbacks_ran_flags.set(ID);
|
|
REQUIRE(CB_IDS[ID] == user_data);
|
|
REQUIRE(ID == counter);
|
|
REQUIRE(lateness == cycles_late);
|
|
++counter;
|
|
}
|
|
} // namespace SharedSlotTest
|
|
|
|
TEST_CASE("CoreTiming[SharedSlot]", "[core]") {
|
|
using namespace SharedSlotTest;
|
|
|
|
Core::Timing timing(1, 100);
|
|
|
|
Core::TimingEventType* cb_a = timing.RegisterEvent("callbackA", FifoCallback<0>);
|
|
Core::TimingEventType* cb_b = timing.RegisterEvent("callbackB", FifoCallback<1>);
|
|
Core::TimingEventType* cb_c = timing.RegisterEvent("callbackC", FifoCallback<2>);
|
|
Core::TimingEventType* cb_d = timing.RegisterEvent("callbackD", FifoCallback<3>);
|
|
Core::TimingEventType* cb_e = timing.RegisterEvent("callbackE", FifoCallback<4>);
|
|
|
|
timing.ScheduleEvent(1000, cb_a, CB_IDS[0], 0);
|
|
timing.ScheduleEvent(1000, cb_b, CB_IDS[1], 0);
|
|
timing.ScheduleEvent(1000, cb_c, CB_IDS[2], 0);
|
|
timing.ScheduleEvent(1000, cb_d, CB_IDS[3], 0);
|
|
timing.ScheduleEvent(1000, cb_e, CB_IDS[4], 0);
|
|
|
|
// Enter slice 0
|
|
timing.GetTimer(0)->Advance();
|
|
timing.GetTimer(0)->SetNextSlice();
|
|
REQUIRE(1000 == timing.GetTimer(0)->GetDowncount());
|
|
|
|
callbacks_ran_flags = 0;
|
|
counter = 0;
|
|
lateness = 0;
|
|
timing.GetTimer(0)->AddTicks(timing.GetTimer(0)->GetDowncount());
|
|
timing.GetTimer(0)->Advance();
|
|
timing.GetTimer(0)->SetNextSlice();
|
|
REQUIRE(MAX_SLICE_LENGTH == timing.GetTimer(0)->GetDowncount());
|
|
REQUIRE(0x1FULL == callbacks_ran_flags.to_ullong());
|
|
}
|
|
|
|
TEST_CASE("CoreTiming[PredictableLateness]", "[core]") {
|
|
Core::Timing timing(1, 100);
|
|
|
|
Core::TimingEventType* cb_a = timing.RegisterEvent("callbackA", CallbackTemplate<0>);
|
|
Core::TimingEventType* cb_b = timing.RegisterEvent("callbackB", CallbackTemplate<1>);
|
|
|
|
// Enter slice 0
|
|
timing.GetTimer(0)->Advance();
|
|
timing.GetTimer(0)->SetNextSlice();
|
|
|
|
timing.ScheduleEvent(100, cb_a, CB_IDS[0], 0);
|
|
timing.ScheduleEvent(200, cb_b, CB_IDS[1], 0);
|
|
|
|
AdvanceAndCheck(timing, 0, 90, 10, -10); // (100 - 10)
|
|
AdvanceAndCheck(timing, 1, MAX_SLICE_LENGTH, 50, -50);
|
|
}
|
|
|
|
namespace ChainSchedulingTest {
|
|
static int reschedules = 0;
|
|
|
|
static void RescheduleCallback(Core::Timing& timing, std::uintptr_t user_data, s64 cycles_late) {
|
|
--reschedules;
|
|
REQUIRE(reschedules >= 0);
|
|
REQUIRE(lateness == cycles_late);
|
|
|
|
if (reschedules > 0)
|
|
timing.ScheduleEvent(1000, reinterpret_cast<Core::TimingEventType*>(user_data), user_data);
|
|
}
|
|
} // namespace ChainSchedulingTest
|
|
|
|
TEST_CASE("CoreTiming[ChainScheduling]", "[core]") {
|
|
using namespace ChainSchedulingTest;
|
|
|
|
Core::Timing timing(1, 100);
|
|
|
|
Core::TimingEventType* cb_a = timing.RegisterEvent("callbackA", CallbackTemplate<0>);
|
|
Core::TimingEventType* cb_b = timing.RegisterEvent("callbackB", CallbackTemplate<1>);
|
|
Core::TimingEventType* cb_c = timing.RegisterEvent("callbackC", CallbackTemplate<2>);
|
|
Core::TimingEventType* cb_rs = timing.RegisterEvent(
|
|
"callbackReschedule", [&timing](std::uintptr_t user_data, s64 cycles_late) {
|
|
RescheduleCallback(timing, user_data, cycles_late);
|
|
});
|
|
|
|
// Enter slice 0
|
|
timing.GetTimer(0)->Advance();
|
|
timing.GetTimer(0)->SetNextSlice();
|
|
|
|
timing.ScheduleEvent(800, cb_a, CB_IDS[0], 0);
|
|
timing.ScheduleEvent(1000, cb_b, CB_IDS[1], 0);
|
|
timing.ScheduleEvent(2200, cb_c, CB_IDS[2], 0);
|
|
timing.ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs), 0);
|
|
REQUIRE(800 == timing.GetTimer(0)->GetDowncount());
|
|
|
|
reschedules = 3;
|
|
AdvanceAndCheck(timing, 0, 200); // cb_a
|
|
AdvanceAndCheck(timing, 1, 1000); // cb_b, cb_rs
|
|
REQUIRE(2 == reschedules);
|
|
|
|
timing.GetTimer(0)->AddTicks(timing.GetTimer(0)->GetDowncount());
|
|
timing.GetTimer(0)->Advance();
|
|
timing.GetTimer(0)->SetNextSlice(); // cb_rs
|
|
REQUIRE(1 == reschedules);
|
|
REQUIRE(200 == timing.GetTimer(0)->GetDowncount());
|
|
|
|
AdvanceAndCheck(timing, 2, 800); // cb_c
|
|
|
|
timing.GetTimer(0)->AddTicks(timing.GetTimer(0)->GetDowncount());
|
|
timing.GetTimer(0)->Advance();
|
|
timing.GetTimer(0)->SetNextSlice(); // cb_rs
|
|
REQUIRE(0 == reschedules);
|
|
REQUIRE(MAX_SLICE_LENGTH == timing.GetTimer(0)->GetDowncount());
|
|
}
|
|
|
|
// TODO: Add tests for multiple timers
|