mirror of
https://github.com/starr-dusT/citra.git
synced 2024-10-02 10:26:17 -07:00
de79b6fc48
Switch context to the same thread if necessary
641 lines
23 KiB
C++
641 lines
23 KiB
C++
// Copyright 2014 Citra Emulator Project / PPSSPP Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
#include <list>
|
|
#include <vector>
|
|
|
|
#include "common/assert.h"
|
|
#include "common/common_types.h"
|
|
#include "common/logging/log.h"
|
|
#include "common/math_util.h"
|
|
#include "common/thread_queue_list.h"
|
|
|
|
#include "core/arm/arm_interface.h"
|
|
#include "core/arm/skyeye_common/armstate.h"
|
|
#include "core/core.h"
|
|
#include "core/core_timing.h"
|
|
#include "core/hle/hle.h"
|
|
#include "core/hle/kernel/kernel.h"
|
|
#include "core/hle/kernel/process.h"
|
|
#include "core/hle/kernel/thread.h"
|
|
#include "core/hle/kernel/memory.h"
|
|
#include "core/hle/kernel/mutex.h"
|
|
#include "core/hle/result.h"
|
|
#include "core/memory.h"
|
|
|
|
namespace Kernel {
|
|
|
|
/// Event type for the thread wake up event
|
|
static int ThreadWakeupEventType;
|
|
|
|
bool Thread::ShouldWait() {
|
|
return status != THREADSTATUS_DEAD;
|
|
}
|
|
|
|
void Thread::Acquire() {
|
|
ASSERT_MSG(!ShouldWait(), "object unavailable!");
|
|
}
|
|
|
|
// TODO(yuriks): This can be removed if Thread objects are explicitly pooled in the future, allowing
|
|
// us to simply use a pool index or similar.
|
|
static Kernel::HandleTable wakeup_callback_handle_table;
|
|
|
|
// Lists all thread ids that aren't deleted/etc.
|
|
static std::vector<SharedPtr<Thread>> thread_list;
|
|
|
|
// Lists only ready thread ids.
|
|
static Common::ThreadQueueList<Thread*, THREADPRIO_LOWEST+1> ready_queue;
|
|
|
|
static Thread* current_thread;
|
|
|
|
// The first available thread id at startup
|
|
static u32 next_thread_id;
|
|
|
|
/**
|
|
* Creates a new thread ID
|
|
* @return The new thread ID
|
|
*/
|
|
inline static u32 const NewThreadId() {
|
|
return next_thread_id++;
|
|
}
|
|
|
|
Thread::Thread() {}
|
|
Thread::~Thread() {}
|
|
|
|
Thread* GetCurrentThread() {
|
|
return current_thread;
|
|
}
|
|
|
|
/**
|
|
* Check if a thread is waiting on the specified wait object
|
|
* @param thread The thread to test
|
|
* @param wait_object The object to test against
|
|
* @return True if the thread is waiting, false otherwise
|
|
*/
|
|
static bool CheckWait_WaitObject(const Thread* thread, WaitObject* wait_object) {
|
|
if (thread->status != THREADSTATUS_WAIT_SYNCH)
|
|
return false;
|
|
|
|
auto itr = std::find(thread->wait_objects.begin(), thread->wait_objects.end(), wait_object);
|
|
return itr != thread->wait_objects.end();
|
|
}
|
|
|
|
/**
|
|
* Check if the specified thread is waiting on the specified address to be arbitrated
|
|
* @param thread The thread to test
|
|
* @param wait_address The address to test against
|
|
* @return True if the thread is waiting, false otherwise
|
|
*/
|
|
static bool CheckWait_AddressArbiter(const Thread* thread, VAddr wait_address) {
|
|
return thread->status == THREADSTATUS_WAIT_ARB && wait_address == thread->wait_address;
|
|
}
|
|
|
|
void Thread::Stop() {
|
|
// Release all the mutexes that this thread holds
|
|
ReleaseThreadMutexes(this);
|
|
|
|
// Cancel any outstanding wakeup events for this thread
|
|
CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle);
|
|
wakeup_callback_handle_table.Close(callback_handle);
|
|
callback_handle = 0;
|
|
|
|
// Clean up thread from ready queue
|
|
// This is only needed when the thread is termintated forcefully (SVC TerminateProcess)
|
|
if (status == THREADSTATUS_READY){
|
|
ready_queue.remove(current_priority, this);
|
|
}
|
|
|
|
status = THREADSTATUS_DEAD;
|
|
|
|
WakeupAllWaitingThreads();
|
|
|
|
// Clean up any dangling references in objects that this thread was waiting for
|
|
for (auto& wait_object : wait_objects) {
|
|
wait_object->RemoveWaitingThread(this);
|
|
}
|
|
wait_objects.clear();
|
|
|
|
// Mark the TLS slot in the thread's page as free.
|
|
u32 tls_page = (tls_address - Memory::TLS_AREA_VADDR) / Memory::PAGE_SIZE;
|
|
u32 tls_slot = ((tls_address - Memory::TLS_AREA_VADDR) % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE;
|
|
Kernel::g_current_process->tls_slots[tls_page].reset(tls_slot);
|
|
|
|
HLE::Reschedule(__func__);
|
|
}
|
|
|
|
Thread* ArbitrateHighestPriorityThread(u32 address) {
|
|
Thread* highest_priority_thread = nullptr;
|
|
s32 priority = THREADPRIO_LOWEST;
|
|
|
|
// Iterate through threads, find highest priority thread that is waiting to be arbitrated...
|
|
for (auto& thread : thread_list) {
|
|
if (!CheckWait_AddressArbiter(thread.get(), address))
|
|
continue;
|
|
|
|
if (thread == nullptr)
|
|
continue;
|
|
|
|
if(thread->current_priority <= priority) {
|
|
highest_priority_thread = thread.get();
|
|
priority = thread->current_priority;
|
|
}
|
|
}
|
|
|
|
// If a thread was arbitrated, resume it
|
|
if (nullptr != highest_priority_thread) {
|
|
highest_priority_thread->ResumeFromWait();
|
|
}
|
|
|
|
return highest_priority_thread;
|
|
}
|
|
|
|
void ArbitrateAllThreads(u32 address) {
|
|
// Resume all threads found to be waiting on the address
|
|
for (auto& thread : thread_list) {
|
|
if (CheckWait_AddressArbiter(thread.get(), address))
|
|
thread->ResumeFromWait();
|
|
}
|
|
}
|
|
|
|
/// Boost low priority threads (temporarily) that have been starved
|
|
static void PriorityBoostStarvedThreads() {
|
|
u64 current_ticks = CoreTiming::GetTicks();
|
|
|
|
for (auto& thread : thread_list) {
|
|
// TODO(bunnei): Threads that have been waiting to be scheduled for `boost_ticks` (or
|
|
// longer) will have their priority temporarily adjusted to 1 higher than the highest
|
|
// priority thread to prevent thread starvation. This general behavior has been verified
|
|
// on hardware. However, this is almost certainly not perfect, and the real CTR OS scheduler
|
|
// should probably be reversed to verify this.
|
|
|
|
const u64 boost_timeout = 2000000; // Boost threads that have been ready for > this long
|
|
|
|
u64 delta = current_ticks - thread->last_running_ticks;
|
|
|
|
if (thread->status == THREADSTATUS_READY && delta > boost_timeout) {
|
|
const s32 priority = std::max(ready_queue.get_first()->current_priority - 1, 0);
|
|
thread->BoostPriority(priority);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Gets the registers for timeout parameter of the next WaitSynchronization call.
|
|
* @param thread a pointer to the thread that is ready to call WaitSynchronization
|
|
* @returns a tuple of two register pointers to low and high part of the timeout parameter
|
|
*/
|
|
static std::tuple<u32*, u32*> GetWaitSynchTimeoutParameterRegister(Thread* thread) {
|
|
bool thumb_mode = (thread->context.cpsr & TBIT) != 0;
|
|
u16 thumb_inst = Memory::Read16(thread->context.pc & 0xFFFFFFFE);
|
|
u32 inst = Memory::Read32(thread->context.pc & 0xFFFFFFFC) & 0x0FFFFFFF;
|
|
|
|
if ((thumb_mode && thumb_inst == 0xDF24) || (!thumb_mode && inst == 0x0F000024)) {
|
|
// svc #0x24 (WaitSynchronization1)
|
|
return std::make_tuple(&thread->context.cpu_registers[2], &thread->context.cpu_registers[3]);
|
|
} else if ((thumb_mode && thumb_inst == 0xDF25) || (!thumb_mode && inst == 0x0F000025)) {
|
|
// svc #0x25 (WaitSynchronizationN)
|
|
return std::make_tuple(&thread->context.cpu_registers[0], &thread->context.cpu_registers[4]);
|
|
}
|
|
|
|
UNREACHABLE();
|
|
}
|
|
|
|
/**
|
|
* Updates the WaitSynchronization timeout paramter according to the difference
|
|
* between ticks of the last WaitSynchronization call and the incoming one.
|
|
* @param timeout_low a pointer to the register for the low part of the timeout parameter
|
|
* @param timeout_high a pointer to the register for the high part of the timeout parameter
|
|
* @param last_tick tick of the last WaitSynchronization call
|
|
*/
|
|
static void UpdateTimeoutParameter(u32* timeout_low, u32* timeout_high, u64 last_tick) {
|
|
s64 timeout = ((s64)*timeout_high << 32) | *timeout_low;
|
|
|
|
if (timeout != -1) {
|
|
timeout -= cyclesToUs(CoreTiming::GetTicks() - last_tick) * 1000; // in nanoseconds
|
|
|
|
if (timeout < 0)
|
|
timeout = 0;
|
|
|
|
*timeout_low = timeout & 0xFFFFFFFF;
|
|
*timeout_high = timeout >> 32;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Switches the CPU's active thread context to that of the specified thread
|
|
* @param new_thread The thread to switch to
|
|
*/
|
|
static void SwitchContext(Thread* new_thread) {
|
|
Thread* previous_thread = GetCurrentThread();
|
|
|
|
// Save context for previous thread
|
|
if (previous_thread) {
|
|
previous_thread->last_running_ticks = CoreTiming::GetTicks();
|
|
Core::g_app_core->SaveContext(previous_thread->context);
|
|
|
|
if (previous_thread->status == THREADSTATUS_RUNNING) {
|
|
// This is only the case when a reschedule is triggered without the current thread
|
|
// yielding execution (i.e. an event triggered, system core time-sliced, etc)
|
|
ready_queue.push_front(previous_thread->current_priority, previous_thread);
|
|
previous_thread->status = THREADSTATUS_READY;
|
|
}
|
|
}
|
|
|
|
// Load context of new thread
|
|
if (new_thread) {
|
|
DEBUG_ASSERT_MSG(new_thread->status == THREADSTATUS_READY, "Thread must be ready to become running.");
|
|
|
|
// Cancel any outstanding wakeup events for this thread
|
|
CoreTiming::UnscheduleEvent(ThreadWakeupEventType, new_thread->callback_handle);
|
|
|
|
current_thread = new_thread;
|
|
|
|
// If the thread was waited by a svcWaitSynch call, step back PC by one instruction to rerun
|
|
// the SVC when the thread wakes up. This is necessary to ensure that the thread can acquire
|
|
// the requested wait object(s) before continuing.
|
|
if (new_thread->waitsynch_waited) {
|
|
// CPSR flag indicates CPU mode
|
|
bool thumb_mode = (new_thread->context.cpsr & TBIT) != 0;
|
|
|
|
// SVC instruction is 2 bytes for THUMB, 4 bytes for ARM
|
|
new_thread->context.pc -= thumb_mode ? 2 : 4;
|
|
|
|
// Get the register for timeout parameter
|
|
u32* timeout_low, *timeout_high;
|
|
std::tie(timeout_low, timeout_high) = GetWaitSynchTimeoutParameterRegister(new_thread);
|
|
|
|
// Update the timeout parameter
|
|
UpdateTimeoutParameter(timeout_low, timeout_high, new_thread->last_running_ticks);
|
|
}
|
|
|
|
// Clean up the thread's wait_objects, they'll be restored if needed during
|
|
// the svcWaitSynchronization call
|
|
for (size_t i = 0; i < new_thread->wait_objects.size(); ++i) {
|
|
SharedPtr<WaitObject> object = new_thread->wait_objects[i];
|
|
object->RemoveWaitingThread(new_thread);
|
|
}
|
|
new_thread->wait_objects.clear();
|
|
|
|
ready_queue.remove(new_thread->current_priority, new_thread);
|
|
new_thread->status = THREADSTATUS_RUNNING;
|
|
|
|
// Restores thread to its nominal priority if it has been temporarily changed
|
|
new_thread->current_priority = new_thread->nominal_priority;
|
|
|
|
Core::g_app_core->LoadContext(new_thread->context);
|
|
Core::g_app_core->SetCP15Register(CP15_THREAD_URO, new_thread->GetTLSAddress());
|
|
} else {
|
|
current_thread = nullptr;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Pops and returns the next thread from the thread queue
|
|
* @return A pointer to the next ready thread
|
|
*/
|
|
static Thread* PopNextReadyThread() {
|
|
Thread* next;
|
|
Thread* thread = GetCurrentThread();
|
|
|
|
if (thread && thread->status == THREADSTATUS_RUNNING) {
|
|
// We have to do better than the current thread.
|
|
// This call returns null when that's not possible.
|
|
next = ready_queue.pop_first_better(thread->current_priority);
|
|
if (!next) {
|
|
// Otherwise just keep going with the current thread
|
|
next = thread;
|
|
}
|
|
} else {
|
|
next = ready_queue.pop_first();
|
|
}
|
|
|
|
return next;
|
|
}
|
|
|
|
void WaitCurrentThread_Sleep() {
|
|
Thread* thread = GetCurrentThread();
|
|
thread->status = THREADSTATUS_WAIT_SLEEP;
|
|
|
|
HLE::Reschedule(__func__);
|
|
}
|
|
|
|
void WaitCurrentThread_WaitSynchronization(std::vector<SharedPtr<WaitObject>> wait_objects, bool wait_set_output, bool wait_all) {
|
|
Thread* thread = GetCurrentThread();
|
|
thread->wait_set_output = wait_set_output;
|
|
thread->wait_all = wait_all;
|
|
thread->wait_objects = std::move(wait_objects);
|
|
thread->waitsynch_waited = true;
|
|
thread->status = THREADSTATUS_WAIT_SYNCH;
|
|
}
|
|
|
|
void WaitCurrentThread_ArbitrateAddress(VAddr wait_address) {
|
|
Thread* thread = GetCurrentThread();
|
|
thread->wait_address = wait_address;
|
|
thread->status = THREADSTATUS_WAIT_ARB;
|
|
}
|
|
|
|
/**
|
|
* Callback that will wake up the thread it was scheduled for
|
|
* @param thread_handle The handle of the thread that's been awoken
|
|
* @param cycles_late The number of CPU cycles that have passed since the desired wakeup time
|
|
*/
|
|
static void ThreadWakeupCallback(u64 thread_handle, int cycles_late) {
|
|
SharedPtr<Thread> thread = wakeup_callback_handle_table.Get<Thread>((Handle)thread_handle);
|
|
if (thread == nullptr) {
|
|
LOG_CRITICAL(Kernel, "Callback fired for invalid thread %08X", (Handle)thread_handle);
|
|
return;
|
|
}
|
|
|
|
thread->waitsynch_waited = false;
|
|
|
|
if (thread->status == THREADSTATUS_WAIT_SYNCH || thread->status == THREADSTATUS_WAIT_ARB) {
|
|
thread->SetWaitSynchronizationResult(ResultCode(ErrorDescription::Timeout, ErrorModule::OS,
|
|
ErrorSummary::StatusChanged, ErrorLevel::Info));
|
|
|
|
if (thread->wait_set_output)
|
|
thread->SetWaitSynchronizationOutput(-1);
|
|
}
|
|
|
|
thread->ResumeFromWait();
|
|
}
|
|
|
|
void Thread::WakeAfterDelay(s64 nanoseconds) {
|
|
// Don't schedule a wakeup if the thread wants to wait forever
|
|
if (nanoseconds == -1)
|
|
return;
|
|
|
|
u64 microseconds = nanoseconds / 1000;
|
|
CoreTiming::ScheduleEvent(usToCycles(microseconds), ThreadWakeupEventType, callback_handle);
|
|
}
|
|
|
|
void Thread::ResumeFromWait() {
|
|
switch (status) {
|
|
case THREADSTATUS_WAIT_SYNCH:
|
|
case THREADSTATUS_WAIT_ARB:
|
|
case THREADSTATUS_WAIT_SLEEP:
|
|
break;
|
|
|
|
case THREADSTATUS_READY:
|
|
// If the thread is waiting on multiple wait objects, it might be awoken more than once
|
|
// before actually resuming. We can ignore subsequent wakeups if the thread status has
|
|
// already been set to THREADSTATUS_READY.
|
|
return;
|
|
|
|
case THREADSTATUS_RUNNING:
|
|
DEBUG_ASSERT_MSG(false, "Thread with object id %u has already resumed.", GetObjectId());
|
|
return;
|
|
case THREADSTATUS_DEAD:
|
|
// This should never happen, as threads must complete before being stopped.
|
|
DEBUG_ASSERT_MSG(false, "Thread with object id %u cannot be resumed because it's DEAD.",
|
|
GetObjectId());
|
|
return;
|
|
}
|
|
|
|
ready_queue.push_back(current_priority, this);
|
|
status = THREADSTATUS_READY;
|
|
}
|
|
|
|
/**
|
|
* Prints the thread queue for debugging purposes
|
|
*/
|
|
static void DebugThreadQueue() {
|
|
Thread* thread = GetCurrentThread();
|
|
if (!thread) {
|
|
LOG_DEBUG(Kernel, "Current: NO CURRENT THREAD");
|
|
} else {
|
|
LOG_DEBUG(Kernel, "0x%02X %u (current)", thread->current_priority, GetCurrentThread()->GetObjectId());
|
|
}
|
|
|
|
for (auto& t : thread_list) {
|
|
s32 priority = ready_queue.contains(t.get());
|
|
if (priority != -1) {
|
|
LOG_DEBUG(Kernel, "0x%02X %u", priority, t->GetObjectId());
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Finds a free location for the TLS section of a thread.
|
|
* @param tls_slots The TLS page array of the thread's owner process.
|
|
* Returns a tuple of (page, slot, alloc_needed) where:
|
|
* page: The index of the first allocated TLS page that has free slots.
|
|
* slot: The index of the first free slot in the indicated page.
|
|
* alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full).
|
|
*/
|
|
std::tuple<u32, u32, bool> GetFreeThreadLocalSlot(std::vector<std::bitset<8>>& tls_slots) {
|
|
// Iterate over all the allocated pages, and try to find one where not all slots are used.
|
|
for (unsigned page = 0; page < tls_slots.size(); ++page) {
|
|
const auto& page_tls_slots = tls_slots[page];
|
|
if (!page_tls_slots.all()) {
|
|
// We found a page with at least one free slot, find which slot it is
|
|
for (unsigned slot = 0; slot < page_tls_slots.size(); ++slot) {
|
|
if (!page_tls_slots.test(slot)) {
|
|
return std::make_tuple(page, slot, false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::make_tuple(0, 0, true);
|
|
}
|
|
|
|
ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point, s32 priority,
|
|
u32 arg, s32 processor_id, VAddr stack_top) {
|
|
if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) {
|
|
s32 new_priority = MathUtil::Clamp<s32>(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST);
|
|
LOG_WARNING(Kernel_SVC, "(name=%s): invalid priority=%d, clamping to %d",
|
|
name.c_str(), priority, new_priority);
|
|
// TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm
|
|
// validity of this
|
|
priority = new_priority;
|
|
}
|
|
|
|
if (!Memory::IsValidVirtualAddress(entry_point)) {
|
|
LOG_ERROR(Kernel_SVC, "(name=%s): invalid entry %08x", name.c_str(), entry_point);
|
|
// TODO: Verify error
|
|
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::Kernel,
|
|
ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
|
|
}
|
|
|
|
SharedPtr<Thread> thread(new Thread);
|
|
|
|
thread_list.push_back(thread);
|
|
ready_queue.prepare(priority);
|
|
|
|
thread->thread_id = NewThreadId();
|
|
thread->status = THREADSTATUS_DORMANT;
|
|
thread->entry_point = entry_point;
|
|
thread->stack_top = stack_top;
|
|
thread->nominal_priority = thread->current_priority = priority;
|
|
thread->last_running_ticks = CoreTiming::GetTicks();
|
|
thread->processor_id = processor_id;
|
|
thread->wait_set_output = false;
|
|
thread->wait_all = false;
|
|
thread->wait_objects.clear();
|
|
thread->wait_address = 0;
|
|
thread->name = std::move(name);
|
|
thread->callback_handle = wakeup_callback_handle_table.Create(thread).MoveFrom();
|
|
thread->owner_process = g_current_process;
|
|
thread->waitsynch_waited = false;
|
|
|
|
// Find the next available TLS index, and mark it as used
|
|
auto& tls_slots = Kernel::g_current_process->tls_slots;
|
|
bool needs_allocation = true;
|
|
u32 available_page; // Which allocated page has free space
|
|
u32 available_slot; // Which slot within the page is free
|
|
|
|
std::tie(available_page, available_slot, needs_allocation) = GetFreeThreadLocalSlot(tls_slots);
|
|
|
|
if (needs_allocation) {
|
|
// There are no already-allocated pages with free slots, lets allocate a new one.
|
|
// TLS pages are allocated from the BASE region in the linear heap.
|
|
MemoryRegionInfo* memory_region = GetMemoryRegion(MemoryRegion::BASE);
|
|
auto& linheap_memory = memory_region->linear_heap_memory;
|
|
|
|
if (linheap_memory->size() + Memory::PAGE_SIZE > memory_region->size) {
|
|
LOG_ERROR(Kernel_SVC, "Not enough space in region to allocate a new TLS page for thread");
|
|
return ResultCode(ErrorDescription::OutOfMemory, ErrorModule::Kernel, ErrorSummary::OutOfResource, ErrorLevel::Permanent);
|
|
}
|
|
|
|
u32 offset = linheap_memory->size();
|
|
|
|
// Allocate some memory from the end of the linear heap for this region.
|
|
linheap_memory->insert(linheap_memory->end(), Memory::PAGE_SIZE, 0);
|
|
memory_region->used += Memory::PAGE_SIZE;
|
|
Kernel::g_current_process->linear_heap_used += Memory::PAGE_SIZE;
|
|
|
|
tls_slots.emplace_back(0); // The page is completely available at the start
|
|
available_page = tls_slots.size() - 1;
|
|
available_slot = 0; // Use the first slot in the new page
|
|
|
|
auto& vm_manager = Kernel::g_current_process->vm_manager;
|
|
vm_manager.RefreshMemoryBlockMappings(linheap_memory.get());
|
|
|
|
// Map the page to the current process' address space.
|
|
// TODO(Subv): Find the correct MemoryState for this region.
|
|
vm_manager.MapMemoryBlock(Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE,
|
|
linheap_memory, offset, Memory::PAGE_SIZE, MemoryState::Private);
|
|
}
|
|
|
|
// Mark the slot as used
|
|
tls_slots[available_page].set(available_slot);
|
|
thread->tls_address = Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE + available_slot * Memory::TLS_ENTRY_SIZE;
|
|
|
|
// TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used
|
|
// to initialize the context
|
|
Core::g_app_core->ResetContext(thread->context, stack_top, entry_point, arg);
|
|
|
|
ready_queue.push_back(thread->current_priority, thread.get());
|
|
thread->status = THREADSTATUS_READY;
|
|
|
|
HLE::Reschedule(__func__);
|
|
|
|
return MakeResult<SharedPtr<Thread>>(std::move(thread));
|
|
}
|
|
|
|
// TODO(peachum): Remove this. Range checking should be done, and an appropriate error should be returned.
|
|
static void ClampPriority(const Thread* thread, s32* priority) {
|
|
if (*priority < THREADPRIO_HIGHEST || *priority > THREADPRIO_LOWEST) {
|
|
DEBUG_ASSERT_MSG(false, "Application passed an out of range priority. An error should be returned.");
|
|
|
|
s32 new_priority = MathUtil::Clamp<s32>(*priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST);
|
|
LOG_WARNING(Kernel_SVC, "(name=%s): invalid priority=%d, clamping to %d",
|
|
thread->name.c_str(), *priority, new_priority);
|
|
// TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm
|
|
// validity of this
|
|
*priority = new_priority;
|
|
}
|
|
}
|
|
|
|
void Thread::SetPriority(s32 priority) {
|
|
ClampPriority(this, &priority);
|
|
|
|
// If thread was ready, adjust queues
|
|
if (status == THREADSTATUS_READY)
|
|
ready_queue.move(this, current_priority, priority);
|
|
else
|
|
ready_queue.prepare(priority);
|
|
|
|
nominal_priority = current_priority = priority;
|
|
}
|
|
|
|
void Thread::BoostPriority(s32 priority) {
|
|
ready_queue.move(this, current_priority, priority);
|
|
current_priority = priority;
|
|
}
|
|
|
|
SharedPtr<Thread> SetupMainThread(u32 entry_point, s32 priority) {
|
|
DEBUG_ASSERT(!GetCurrentThread());
|
|
|
|
// Initialize new "main" thread
|
|
auto thread_res = Thread::Create("main", entry_point, priority, 0,
|
|
THREADPROCESSORID_0, Memory::HEAP_VADDR_END);
|
|
|
|
SharedPtr<Thread> thread = thread_res.MoveFrom();
|
|
|
|
thread->context.fpscr = FPSCR_DEFAULT_NAN | FPSCR_FLUSH_TO_ZERO | FPSCR_ROUND_TOZERO | FPSCR_IXC; // 0x03C00010
|
|
|
|
// Run new "main" thread
|
|
SwitchContext(thread.get());
|
|
|
|
return thread;
|
|
}
|
|
|
|
void Reschedule() {
|
|
PriorityBoostStarvedThreads();
|
|
|
|
Thread* cur = GetCurrentThread();
|
|
Thread* next = PopNextReadyThread();
|
|
|
|
HLE::DoneRescheduling();
|
|
|
|
// Don't bother switching to the same thread.
|
|
// But if the thread was waiting on objects, we still need to switch it
|
|
// to perform PC modification, change state to RUNNING, etc.
|
|
// This occurs in the case when an object the thread is waiting on immediately wakes up
|
|
// the current thread before Reschedule() is called.
|
|
if (next == cur && (next == nullptr || next->waitsynch_waited == false))
|
|
return;
|
|
|
|
if (cur && next) {
|
|
LOG_TRACE(Kernel, "context switch %u -> %u", cur->GetObjectId(), next->GetObjectId());
|
|
} else if (cur) {
|
|
LOG_TRACE(Kernel, "context switch %u -> idle", cur->GetObjectId());
|
|
} else if (next) {
|
|
LOG_TRACE(Kernel, "context switch idle -> %u", next->GetObjectId());
|
|
}
|
|
|
|
SwitchContext(next);
|
|
}
|
|
|
|
void Thread::SetWaitSynchronizationResult(ResultCode result) {
|
|
context.cpu_registers[0] = result.raw;
|
|
}
|
|
|
|
void Thread::SetWaitSynchronizationOutput(s32 output) {
|
|
context.cpu_registers[1] = output;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void ThreadingInit() {
|
|
ThreadWakeupEventType = CoreTiming::RegisterEvent("ThreadWakeupCallback", ThreadWakeupCallback);
|
|
|
|
current_thread = nullptr;
|
|
next_thread_id = 1;
|
|
}
|
|
|
|
void ThreadingShutdown() {
|
|
current_thread = nullptr;
|
|
|
|
for (auto& t : thread_list) {
|
|
t->Stop();
|
|
}
|
|
thread_list.clear();
|
|
ready_queue.clear();
|
|
}
|
|
|
|
} // namespace
|