citra/src/core/hle/kernel/svc.cpp
Weiyi Wang 803f783f07
Merge pull request #4427 from wwylele/query-memory-merge
SVC: QueryMemory merges similar VMA
2018-11-19 11:10:15 -05:00

1603 lines
60 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <cinttypes>
#include <map>
#include <fmt/format.h>
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/scope_exit.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/address_arbiter.h"
#include "core/hle/kernel/client_port.h"
#include "core/hle/kernel/client_session.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/event.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/ipc.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/semaphore.h"
#include "core/hle/kernel/server_port.h"
#include "core/hle/kernel/server_session.h"
#include "core/hle/kernel/session.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/kernel/svc_wrapper.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/timer.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/hle/kernel/wait_object.h"
#include "core/hle/lock.h"
#include "core/hle/result.h"
#include "core/hle/service/service.h"
namespace Kernel {
enum ControlMemoryOperation {
MEMOP_FREE = 1,
MEMOP_RESERVE = 2, // This operation seems to be unsupported in the kernel
MEMOP_COMMIT = 3,
MEMOP_MAP = 4,
MEMOP_UNMAP = 5,
MEMOP_PROTECT = 6,
MEMOP_OPERATION_MASK = 0xFF,
MEMOP_REGION_APP = 0x100,
MEMOP_REGION_SYSTEM = 0x200,
MEMOP_REGION_BASE = 0x300,
MEMOP_REGION_MASK = 0xF00,
MEMOP_LINEAR = 0x10000,
};
struct MemoryInfo {
u32 base_address;
u32 size;
u32 permission;
u32 state;
};
struct PageInfo {
u32 flags;
};
/// Values accepted by svcGetSystemInfo's type parameter.
enum class SystemInfoType {
/**
* Reports total used memory for all regions or a specific one, according to the extra
* parameter. See `SystemInfoMemUsageRegion`.
*/
REGION_MEMORY_USAGE = 0,
/**
* Returns the memory usage for certain allocations done internally by the kernel.
*/
KERNEL_ALLOCATED_PAGES = 2,
/**
* "This returns the total number of processes which were launched directly by the kernel.
* For the ARM11 NATIVE_FIRM kernel, this is 5, for processes sm, fs, pm, loader, and pxi."
*/
KERNEL_SPAWNED_PIDS = 26,
};
/**
* Accepted by svcGetSystemInfo param with REGION_MEMORY_USAGE type. Selects a region to query
* memory usage of.
*/
enum class SystemInfoMemUsageRegion {
ALL = 0,
APPLICATION = 1,
SYSTEM = 2,
BASE = 3,
};
class SVC : public SVCWrapper<SVC> {
public:
SVC(Core::System& system);
void CallSVC(u32 immediate);
private:
Core::System& system;
Kernel::KernelSystem& kernel;
friend class SVCWrapper<SVC>;
// ARM interfaces
u32 GetReg(std::size_t n);
void SetReg(std::size_t n, u32 value);
// SVC interfaces
ResultCode ControlMemory(u32* out_addr, u32 addr0, u32 addr1, u32 size, u32 operation,
u32 permissions);
void ExitProcess();
ResultCode MapMemoryBlock(Handle handle, u32 addr, u32 permissions, u32 other_permissions);
ResultCode UnmapMemoryBlock(Handle handle, u32 addr);
ResultCode ConnectToPort(Handle* out_handle, VAddr port_name_address);
ResultCode SendSyncRequest(Handle handle);
ResultCode CloseHandle(Handle handle);
ResultCode WaitSynchronization1(Handle handle, s64 nano_seconds);
ResultCode WaitSynchronizationN(s32* out, VAddr handles_address, s32 handle_count,
bool wait_all, s64 nano_seconds);
ResultCode ReplyAndReceive(s32* index, VAddr handles_address, s32 handle_count,
Handle reply_target);
ResultCode CreateAddressArbiter(Handle* out_handle);
ResultCode ArbitrateAddress(Handle handle, u32 address, u32 type, u32 value, s64 nanoseconds);
void Break(u8 break_reason);
void OutputDebugString(VAddr address, s32 len);
ResultCode GetResourceLimit(Handle* resource_limit, Handle process_handle);
ResultCode GetResourceLimitCurrentValues(VAddr values, Handle resource_limit_handle,
VAddr names, u32 name_count);
ResultCode GetResourceLimitLimitValues(VAddr values, Handle resource_limit_handle, VAddr names,
u32 name_count);
ResultCode CreateThread(Handle* out_handle, u32 entry_point, u32 arg, VAddr stack_top,
u32 priority, s32 processor_id);
void ExitThread();
ResultCode GetThreadPriority(u32* priority, Handle handle);
ResultCode SetThreadPriority(Handle handle, u32 priority);
ResultCode CreateMutex(Handle* out_handle, u32 initial_locked);
ResultCode ReleaseMutex(Handle handle);
ResultCode GetProcessId(u32* process_id, Handle process_handle);
ResultCode GetProcessIdOfThread(u32* process_id, Handle thread_handle);
ResultCode GetThreadId(u32* thread_id, Handle handle);
ResultCode CreateSemaphore(Handle* out_handle, s32 initial_count, s32 max_count);
ResultCode ReleaseSemaphore(s32* count, Handle handle, s32 release_count);
ResultCode QueryProcessMemory(MemoryInfo* memory_info, PageInfo* page_info,
Handle process_handle, u32 addr);
ResultCode QueryMemory(MemoryInfo* memory_info, PageInfo* page_info, u32 addr);
ResultCode CreateEvent(Handle* out_handle, u32 reset_type);
ResultCode DuplicateHandle(Handle* out, Handle handle);
ResultCode SignalEvent(Handle handle);
ResultCode ClearEvent(Handle handle);
ResultCode CreateTimer(Handle* out_handle, u32 reset_type);
ResultCode ClearTimer(Handle handle);
ResultCode SetTimer(Handle handle, s64 initial, s64 interval);
ResultCode CancelTimer(Handle handle);
void SleepThread(s64 nanoseconds);
s64 GetSystemTick();
ResultCode CreateMemoryBlock(Handle* out_handle, u32 addr, u32 size, u32 my_permission,
u32 other_permission);
ResultCode CreatePort(Handle* server_port, Handle* client_port, VAddr name_address,
u32 max_sessions);
ResultCode CreateSessionToPort(Handle* out_client_session, Handle client_port_handle);
ResultCode CreateSession(Handle* server_session, Handle* client_session);
ResultCode AcceptSession(Handle* out_server_session, Handle server_port_handle);
ResultCode GetSystemInfo(s64* out, u32 type, s32 param);
ResultCode GetProcessInfo(s64* out, Handle process_handle, u32 type);
struct FunctionDef {
using Func = void (SVC::*)();
u32 id;
Func func;
const char* name;
};
static const FunctionDef SVC_Table[];
static const FunctionDef* GetSVCInfo(u32 func_num);
};
/// Map application or GSP heap memory
ResultCode SVC::ControlMemory(u32* out_addr, u32 addr0, u32 addr1, u32 size, u32 operation,
u32 permissions) {
LOG_DEBUG(Kernel_SVC,
"called operation=0x{:08X}, addr0=0x{:08X}, addr1=0x{:08X}, "
"size=0x{:X}, permissions=0x{:08X}",
operation, addr0, addr1, size, permissions);
if ((addr0 & Memory::PAGE_MASK) != 0 || (addr1 & Memory::PAGE_MASK) != 0) {
return ERR_MISALIGNED_ADDRESS;
}
if ((size & Memory::PAGE_MASK) != 0) {
return ERR_MISALIGNED_SIZE;
}
u32 region = operation & MEMOP_REGION_MASK;
operation &= ~MEMOP_REGION_MASK;
if (region != 0) {
LOG_WARNING(Kernel_SVC, "ControlMemory with specified region not supported, region={:X}",
region);
}
if ((permissions & (u32)MemoryPermission::ReadWrite) != permissions) {
return ERR_INVALID_COMBINATION;
}
VMAPermission vma_permissions = (VMAPermission)permissions;
auto& process = *kernel.GetCurrentProcess();
switch (operation & MEMOP_OPERATION_MASK) {
case MEMOP_FREE: {
// TODO(Subv): What happens if an application tries to FREE a block of memory that has a
// SharedMemory pointing to it?
if (addr0 >= Memory::HEAP_VADDR && addr0 < Memory::HEAP_VADDR_END) {
ResultCode result = process.HeapFree(addr0, size);
if (result.IsError())
return result;
} else if (addr0 >= process.GetLinearHeapBase() && addr0 < process.GetLinearHeapLimit()) {
ResultCode result = process.LinearFree(addr0, size);
if (result.IsError())
return result;
} else {
return ERR_INVALID_ADDRESS;
}
*out_addr = addr0;
break;
}
case MEMOP_COMMIT: {
if (operation & MEMOP_LINEAR) {
CASCADE_RESULT(*out_addr, process.LinearAllocate(addr0, size, vma_permissions));
} else {
CASCADE_RESULT(*out_addr, process.HeapAllocate(addr0, size, vma_permissions));
}
break;
}
case MEMOP_MAP: {
CASCADE_CODE(process.Map(addr0, addr1, size, vma_permissions));
break;
}
case MEMOP_UNMAP: {
CASCADE_CODE(process.Unmap(addr0, addr1, size, vma_permissions));
break;
}
case MEMOP_PROTECT: {
ResultCode result = process.vm_manager.ReprotectRange(addr0, size, vma_permissions);
if (result.IsError())
return result;
break;
}
default:
LOG_ERROR(Kernel_SVC, "unknown operation=0x{:08X}", operation);
return ERR_INVALID_COMBINATION;
}
process.vm_manager.LogLayout(Log::Level::Trace);
return RESULT_SUCCESS;
}
void SVC::ExitProcess() {
SharedPtr<Process> current_process = kernel.GetCurrentProcess();
LOG_INFO(Kernel_SVC, "Process {} exiting", current_process->process_id);
ASSERT_MSG(current_process->status == ProcessStatus::Running, "Process has already exited");
current_process->status = ProcessStatus::Exited;
// Stop all the process threads that are currently waiting for objects.
auto& thread_list = kernel.GetThreadManager().GetThreadList();
for (auto& thread : thread_list) {
if (thread->owner_process != current_process)
continue;
if (thread == kernel.GetThreadManager().GetCurrentThread())
continue;
// TODO(Subv): When are the other running/ready threads terminated?
ASSERT_MSG(thread->status == ThreadStatus::WaitSynchAny ||
thread->status == ThreadStatus::WaitSynchAll,
"Exiting processes with non-waiting threads is currently unimplemented");
thread->Stop();
}
// Kill the current thread
kernel.GetThreadManager().GetCurrentThread()->Stop();
system.PrepareReschedule();
}
/// Maps a memory block to specified address
ResultCode SVC::MapMemoryBlock(Handle handle, u32 addr, u32 permissions, u32 other_permissions) {
LOG_TRACE(Kernel_SVC,
"called memblock=0x{:08X}, addr=0x{:08X}, mypermissions=0x{:08X}, "
"otherpermission={}",
handle, addr, permissions, other_permissions);
SharedPtr<SharedMemory> shared_memory =
kernel.GetCurrentProcess()->handle_table.Get<SharedMemory>(handle);
if (shared_memory == nullptr)
return ERR_INVALID_HANDLE;
MemoryPermission permissions_type = static_cast<MemoryPermission>(permissions);
switch (permissions_type) {
case MemoryPermission::Read:
case MemoryPermission::Write:
case MemoryPermission::ReadWrite:
case MemoryPermission::Execute:
case MemoryPermission::ReadExecute:
case MemoryPermission::WriteExecute:
case MemoryPermission::ReadWriteExecute:
case MemoryPermission::DontCare:
return shared_memory->Map(kernel.GetCurrentProcess().get(), addr, permissions_type,
static_cast<MemoryPermission>(other_permissions));
default:
LOG_ERROR(Kernel_SVC, "unknown permissions=0x{:08X}", permissions);
}
return ERR_INVALID_COMBINATION;
}
ResultCode SVC::UnmapMemoryBlock(Handle handle, u32 addr) {
LOG_TRACE(Kernel_SVC, "called memblock=0x{:08X}, addr=0x{:08X}", handle, addr);
// TODO(Subv): Return E0A01BF5 if the address is not in the application's heap
SharedPtr<Process> current_process = kernel.GetCurrentProcess();
SharedPtr<SharedMemory> shared_memory = current_process->handle_table.Get<SharedMemory>(handle);
if (shared_memory == nullptr)
return ERR_INVALID_HANDLE;
return shared_memory->Unmap(current_process.get(), addr);
}
/// Connect to an OS service given the port name, returns the handle to the port to out
ResultCode SVC::ConnectToPort(Handle* out_handle, VAddr port_name_address) {
if (!Memory::IsValidVirtualAddress(port_name_address))
return ERR_NOT_FOUND;
static constexpr std::size_t PortNameMaxLength = 11;
// Read 1 char beyond the max allowed port name to detect names that are too long.
std::string port_name = Memory::ReadCString(port_name_address, PortNameMaxLength + 1);
if (port_name.size() > PortNameMaxLength)
return ERR_PORT_NAME_TOO_LONG;
LOG_TRACE(Kernel_SVC, "called port_name={}", port_name);
auto it = kernel.named_ports.find(port_name);
if (it == kernel.named_ports.end()) {
LOG_WARNING(Kernel_SVC, "tried to connect to unknown port: {}", port_name);
return ERR_NOT_FOUND;
}
auto client_port = it->second;
SharedPtr<ClientSession> client_session;
CASCADE_RESULT(client_session, client_port->Connect());
// Return the client session
CASCADE_RESULT(*out_handle, kernel.GetCurrentProcess()->handle_table.Create(client_session));
return RESULT_SUCCESS;
}
/// Makes a blocking IPC call to an OS service.
ResultCode SVC::SendSyncRequest(Handle handle) {
SharedPtr<ClientSession> session =
kernel.GetCurrentProcess()->handle_table.Get<ClientSession>(handle);
if (session == nullptr) {
return ERR_INVALID_HANDLE;
}
LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({})", handle, session->GetName());
system.PrepareReschedule();
return session->SendSyncRequest(kernel.GetThreadManager().GetCurrentThread());
}
/// Close a handle
ResultCode SVC::CloseHandle(Handle handle) {
LOG_TRACE(Kernel_SVC, "Closing handle 0x{:08X}", handle);
return kernel.GetCurrentProcess()->handle_table.Close(handle);
}
/// Wait for a handle to synchronize, timeout after the specified nanoseconds
ResultCode SVC::WaitSynchronization1(Handle handle, s64 nano_seconds) {
auto object = kernel.GetCurrentProcess()->handle_table.Get<WaitObject>(handle);
Thread* thread = kernel.GetThreadManager().GetCurrentThread();
if (object == nullptr)
return ERR_INVALID_HANDLE;
LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({}:{}), nanoseconds={}", handle,
object->GetTypeName(), object->GetName(), nano_seconds);
if (object->ShouldWait(thread)) {
if (nano_seconds == 0)
return RESULT_TIMEOUT;
thread->wait_objects = {object};
object->AddWaitingThread(thread);
thread->status = ThreadStatus::WaitSynchAny;
// Create an event to wake the thread up after the specified nanosecond delay has passed
thread->WakeAfterDelay(nano_seconds);
thread->wakeup_callback = [](ThreadWakeupReason reason, SharedPtr<Thread> thread,
SharedPtr<WaitObject> object) {
ASSERT(thread->status == ThreadStatus::WaitSynchAny);
if (reason == ThreadWakeupReason::Timeout) {
thread->SetWaitSynchronizationResult(RESULT_TIMEOUT);
return;
}
ASSERT(reason == ThreadWakeupReason::Signal);
thread->SetWaitSynchronizationResult(RESULT_SUCCESS);
// WaitSynchronization1 doesn't have an output index like WaitSynchronizationN, so we
// don't have to do anything else here.
};
system.PrepareReschedule();
// Note: The output of this SVC will be set to RESULT_SUCCESS if the thread
// resumes due to a signal in its wait objects.
// Otherwise we retain the default value of timeout.
return RESULT_TIMEOUT;
}
object->Acquire(thread);
return RESULT_SUCCESS;
}
/// Wait for the given handles to synchronize, timeout after the specified nanoseconds
ResultCode SVC::WaitSynchronizationN(s32* out, VAddr handles_address, s32 handle_count,
bool wait_all, s64 nano_seconds) {
Thread* thread = kernel.GetThreadManager().GetCurrentThread();
if (!Memory::IsValidVirtualAddress(handles_address))
return ERR_INVALID_POINTER;
// NOTE: on real hardware, there is no nullptr check for 'out' (tested with firmware 4.4). If
// this happens, the running application will crash.
ASSERT_MSG(out != nullptr, "invalid output pointer specified!");
// Check if 'handle_count' is invalid
if (handle_count < 0)
return ERR_OUT_OF_RANGE;
using ObjectPtr = SharedPtr<WaitObject>;
std::vector<ObjectPtr> objects(handle_count);
for (int i = 0; i < handle_count; ++i) {
Handle handle = Memory::Read32(handles_address + i * sizeof(Handle));
auto object = kernel.GetCurrentProcess()->handle_table.Get<WaitObject>(handle);
if (object == nullptr)
return ERR_INVALID_HANDLE;
objects[i] = object;
}
if (wait_all) {
bool all_available =
std::all_of(objects.begin(), objects.end(),
[thread](const ObjectPtr& object) { return !object->ShouldWait(thread); });
if (all_available) {
// We can acquire all objects right now, do so.
for (auto& object : objects)
object->Acquire(thread);
// Note: In this case, the `out` parameter is not set,
// and retains whatever value it had before.
return RESULT_SUCCESS;
}
// Not all objects were available right now, prepare to suspend the thread.
// If a timeout value of 0 was provided, just return the Timeout error code instead of
// suspending the thread.
if (nano_seconds == 0)
return RESULT_TIMEOUT;
// Put the thread to sleep
thread->status = ThreadStatus::WaitSynchAll;
// Add the thread to each of the objects' waiting threads.
for (auto& object : objects) {
object->AddWaitingThread(thread);
}
thread->wait_objects = std::move(objects);
// Create an event to wake the thread up after the specified nanosecond delay has passed
thread->WakeAfterDelay(nano_seconds);
thread->wakeup_callback = [](ThreadWakeupReason reason, SharedPtr<Thread> thread,
SharedPtr<WaitObject> object) {
ASSERT(thread->status == ThreadStatus::WaitSynchAll);
if (reason == ThreadWakeupReason::Timeout) {
thread->SetWaitSynchronizationResult(RESULT_TIMEOUT);
return;
}
ASSERT(reason == ThreadWakeupReason::Signal);
thread->SetWaitSynchronizationResult(RESULT_SUCCESS);
// The wait_all case does not update the output index.
};
system.PrepareReschedule();
// This value gets set to -1 by default in this case, it is not modified after this.
*out = -1;
// Note: The output of this SVC will be set to RESULT_SUCCESS if the thread resumes due to
// a signal in one of its wait objects.
return RESULT_TIMEOUT;
} else {
// Find the first object that is acquirable in the provided list of objects
auto itr = std::find_if(objects.begin(), objects.end(), [thread](const ObjectPtr& object) {
return !object->ShouldWait(thread);
});
if (itr != objects.end()) {
// We found a ready object, acquire it and set the result value
WaitObject* object = itr->get();
object->Acquire(thread);
*out = static_cast<s32>(std::distance(objects.begin(), itr));
return RESULT_SUCCESS;
}
// No objects were ready to be acquired, prepare to suspend the thread.
// If a timeout value of 0 was provided, just return the Timeout error code instead of
// suspending the thread.
if (nano_seconds == 0)
return RESULT_TIMEOUT;
// Put the thread to sleep
thread->status = ThreadStatus::WaitSynchAny;
// Add the thread to each of the objects' waiting threads.
for (std::size_t i = 0; i < objects.size(); ++i) {
WaitObject* object = objects[i].get();
object->AddWaitingThread(thread);
}
thread->wait_objects = std::move(objects);
// Note: If no handles and no timeout were given, then the thread will deadlock, this is
// consistent with hardware behavior.
// Create an event to wake the thread up after the specified nanosecond delay has passed
thread->WakeAfterDelay(nano_seconds);
thread->wakeup_callback = [](ThreadWakeupReason reason, SharedPtr<Thread> thread,
SharedPtr<WaitObject> object) {
ASSERT(thread->status == ThreadStatus::WaitSynchAny);
if (reason == ThreadWakeupReason::Timeout) {
thread->SetWaitSynchronizationResult(RESULT_TIMEOUT);
return;
}
ASSERT(reason == ThreadWakeupReason::Signal);
thread->SetWaitSynchronizationResult(RESULT_SUCCESS);
thread->SetWaitSynchronizationOutput(thread->GetWaitObjectIndex(object.get()));
};
system.PrepareReschedule();
// Note: The output of this SVC will be set to RESULT_SUCCESS if the thread resumes due to a
// signal in one of its wait objects.
// Otherwise we retain the default value of timeout, and -1 in the out parameter
*out = -1;
return RESULT_TIMEOUT;
}
}
static ResultCode ReceiveIPCRequest(SharedPtr<ServerSession> server_session,
SharedPtr<Thread> thread) {
if (server_session->parent->client == nullptr) {
return ERR_SESSION_CLOSED_BY_REMOTE;
}
VAddr target_address = thread->GetCommandBufferAddress();
VAddr source_address = server_session->currently_handling->GetCommandBufferAddress();
ResultCode translation_result = TranslateCommandBuffer(
server_session->currently_handling, thread, source_address, target_address, false);
// If a translation error occurred, immediately resume the client thread.
if (translation_result.IsError()) {
// Set the output of SendSyncRequest in the client thread to the translation output.
server_session->currently_handling->SetWaitSynchronizationResult(translation_result);
server_session->currently_handling->ResumeFromWait();
server_session->currently_handling = nullptr;
// TODO(Subv): This path should try to wait again on the same objects.
ASSERT_MSG(false, "ReplyAndReceive translation error behavior unimplemented");
}
return translation_result;
}
/// In a single operation, sends a IPC reply and waits for a new request.
ResultCode SVC::ReplyAndReceive(s32* index, VAddr handles_address, s32 handle_count,
Handle reply_target) {
if (!Memory::IsValidVirtualAddress(handles_address))
return ERR_INVALID_POINTER;
// Check if 'handle_count' is invalid
if (handle_count < 0)
return ERR_OUT_OF_RANGE;
using ObjectPtr = SharedPtr<WaitObject>;
std::vector<ObjectPtr> objects(handle_count);
SharedPtr<Process> current_process = kernel.GetCurrentProcess();
for (int i = 0; i < handle_count; ++i) {
Handle handle = Memory::Read32(handles_address + i * sizeof(Handle));
auto object = current_process->handle_table.Get<WaitObject>(handle);
if (object == nullptr)
return ERR_INVALID_HANDLE;
objects[i] = object;
}
// We are also sending a command reply.
// Do not send a reply if the command id in the command buffer is 0xFFFF.
Thread* thread = kernel.GetThreadManager().GetCurrentThread();
u32 cmd_buff_header = Memory::Read32(thread->GetCommandBufferAddress());
IPC::Header header{cmd_buff_header};
if (reply_target != 0 && header.command_id != 0xFFFF) {
auto session = current_process->handle_table.Get<ServerSession>(reply_target);
if (session == nullptr)
return ERR_INVALID_HANDLE;
auto request_thread = std::move(session->currently_handling);
// Mark the request as "handled".
session->currently_handling = nullptr;
// Error out if there's no request thread or the session was closed.
// TODO(Subv): Is the same error code (ClosedByRemote) returned for both of these cases?
if (request_thread == nullptr || session->parent->client == nullptr) {
*index = -1;
return ERR_SESSION_CLOSED_BY_REMOTE;
}
VAddr source_address = thread->GetCommandBufferAddress();
VAddr target_address = request_thread->GetCommandBufferAddress();
ResultCode translation_result =
TranslateCommandBuffer(thread, request_thread, source_address, target_address, true);
// Note: The real kernel seems to always panic if the Server->Client buffer translation
// fails for whatever reason.
ASSERT(translation_result.IsSuccess());
// Note: The scheduler is not invoked here.
request_thread->ResumeFromWait();
}
if (handle_count == 0) {
*index = 0;
// The kernel uses this value as a placeholder for the real error, and returns it when we
// pass no handles and do not perform any reply.
if (reply_target == 0 || header.command_id == 0xFFFF)
return ResultCode(0xE7E3FFFF);
return RESULT_SUCCESS;
}
// Find the first object that is acquirable in the provided list of objects
auto itr = std::find_if(objects.begin(), objects.end(), [thread](const ObjectPtr& object) {
return !object->ShouldWait(thread);
});
if (itr != objects.end()) {
// We found a ready object, acquire it and set the result value
WaitObject* object = itr->get();
object->Acquire(thread);
*index = static_cast<s32>(std::distance(objects.begin(), itr));
if (object->GetHandleType() != HandleType::ServerSession)
return RESULT_SUCCESS;
auto server_session = static_cast<ServerSession*>(object);
return ReceiveIPCRequest(server_session, thread);
}
// No objects were ready to be acquired, prepare to suspend the thread.
// Put the thread to sleep
thread->status = ThreadStatus::WaitSynchAny;
// Add the thread to each of the objects' waiting threads.
for (std::size_t i = 0; i < objects.size(); ++i) {
WaitObject* object = objects[i].get();
object->AddWaitingThread(thread);
}
thread->wait_objects = std::move(objects);
thread->wakeup_callback = [](ThreadWakeupReason reason, SharedPtr<Thread> thread,
SharedPtr<WaitObject> object) {
ASSERT(thread->status == ThreadStatus::WaitSynchAny);
ASSERT(reason == ThreadWakeupReason::Signal);
ResultCode result = RESULT_SUCCESS;
if (object->GetHandleType() == HandleType::ServerSession) {
auto server_session = DynamicObjectCast<ServerSession>(object);
result = ReceiveIPCRequest(server_session, thread);
}
thread->SetWaitSynchronizationResult(result);
thread->SetWaitSynchronizationOutput(thread->GetWaitObjectIndex(object.get()));
};
system.PrepareReschedule();
// Note: The output of this SVC will be set to RESULT_SUCCESS if the thread resumes due to a
// signal in one of its wait objects, or to 0xC8A01836 if there was a translation error.
// By default the index is set to -1.
*index = -1;
return RESULT_SUCCESS;
}
/// Create an address arbiter (to allocate access to shared resources)
ResultCode SVC::CreateAddressArbiter(Handle* out_handle) {
SharedPtr<AddressArbiter> arbiter = kernel.CreateAddressArbiter();
CASCADE_RESULT(*out_handle,
kernel.GetCurrentProcess()->handle_table.Create(std::move(arbiter)));
LOG_TRACE(Kernel_SVC, "returned handle=0x{:08X}", *out_handle);
return RESULT_SUCCESS;
}
/// Arbitrate address
ResultCode SVC::ArbitrateAddress(Handle handle, u32 address, u32 type, u32 value, s64 nanoseconds) {
LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}, address=0x{:08X}, type=0x{:08X}, value=0x{:08X}",
handle, address, type, value);
SharedPtr<AddressArbiter> arbiter =
kernel.GetCurrentProcess()->handle_table.Get<AddressArbiter>(handle);
if (arbiter == nullptr)
return ERR_INVALID_HANDLE;
auto res =
arbiter->ArbitrateAddress(kernel.GetThreadManager().GetCurrentThread(),
static_cast<ArbitrationType>(type), address, value, nanoseconds);
// TODO(Subv): Identify in which specific cases this call should cause a reschedule.
system.PrepareReschedule();
return res;
}
void SVC::Break(u8 break_reason) {
LOG_CRITICAL(Debug_Emulated, "Emulated program broke execution!");
std::string reason_str;
switch (break_reason) {
case 0:
reason_str = "PANIC";
break;
case 1:
reason_str = "ASSERT";
break;
case 2:
reason_str = "USER";
break;
default:
reason_str = "UNKNOWN";
break;
}
LOG_CRITICAL(Debug_Emulated, "Break reason: {}", reason_str);
}
/// Used to output a message on a debug hardware unit - does nothing on a retail unit
void SVC::OutputDebugString(VAddr address, s32 len) {
if (len <= 0) {
return;
}
std::string string(len, ' ');
Memory::ReadBlock(address, string.data(), len);
LOG_DEBUG(Debug_Emulated, "{}", string);
}
/// Get resource limit
ResultCode SVC::GetResourceLimit(Handle* resource_limit, Handle process_handle) {
LOG_TRACE(Kernel_SVC, "called process=0x{:08X}", process_handle);
SharedPtr<Process> current_process = kernel.GetCurrentProcess();
SharedPtr<Process> process = current_process->handle_table.Get<Process>(process_handle);
if (process == nullptr)
return ERR_INVALID_HANDLE;
CASCADE_RESULT(*resource_limit, current_process->handle_table.Create(process->resource_limit));
return RESULT_SUCCESS;
}
/// Get resource limit current values
ResultCode SVC::GetResourceLimitCurrentValues(VAddr values, Handle resource_limit_handle,
VAddr names, u32 name_count) {
LOG_TRACE(Kernel_SVC, "called resource_limit={:08X}, names={:08X}, name_count={}",
resource_limit_handle, names, name_count);
SharedPtr<ResourceLimit> resource_limit =
kernel.GetCurrentProcess()->handle_table.Get<ResourceLimit>(resource_limit_handle);
if (resource_limit == nullptr)
return ERR_INVALID_HANDLE;
for (unsigned int i = 0; i < name_count; ++i) {
u32 name = Memory::Read32(names + i * sizeof(u32));
s64 value = resource_limit->GetCurrentResourceValue(name);
Memory::Write64(values + i * sizeof(u64), value);
}
return RESULT_SUCCESS;
}
/// Get resource limit max values
ResultCode SVC::GetResourceLimitLimitValues(VAddr values, Handle resource_limit_handle, VAddr names,
u32 name_count) {
LOG_TRACE(Kernel_SVC, "called resource_limit={:08X}, names={:08X}, name_count={}",
resource_limit_handle, names, name_count);
SharedPtr<ResourceLimit> resource_limit =
kernel.GetCurrentProcess()->handle_table.Get<ResourceLimit>(resource_limit_handle);
if (resource_limit == nullptr)
return ERR_INVALID_HANDLE;
for (unsigned int i = 0; i < name_count; ++i) {
u32 name = Memory::Read32(names + i * sizeof(u32));
s64 value = resource_limit->GetMaxResourceValue(name);
Memory::Write64(values + i * sizeof(u64), value);
}
return RESULT_SUCCESS;
}
/// Creates a new thread
ResultCode SVC::CreateThread(Handle* out_handle, u32 entry_point, u32 arg, VAddr stack_top,
u32 priority, s32 processor_id) {
std::string name = fmt::format("thread-{:08X}", entry_point);
if (priority > ThreadPrioLowest) {
return ERR_OUT_OF_RANGE;
}
SharedPtr<Process> current_process = kernel.GetCurrentProcess();
SharedPtr<ResourceLimit>& resource_limit = current_process->resource_limit;
if (resource_limit->GetMaxResourceValue(ResourceTypes::PRIORITY) > priority) {
return ERR_NOT_AUTHORIZED;
}
if (processor_id == ThreadProcessorIdDefault) {
// Set the target CPU to the one specified in the process' exheader.
processor_id = current_process->ideal_processor;
ASSERT(processor_id != ThreadProcessorIdDefault);
}
switch (processor_id) {
case ThreadProcessorId0:
break;
case ThreadProcessorIdAll:
LOG_INFO(Kernel_SVC,
"Newly created thread is allowed to be run in any Core, unimplemented.");
break;
case ThreadProcessorId1:
LOG_ERROR(Kernel_SVC,
"Newly created thread must run in the SysCore (Core1), unimplemented.");
break;
default:
// TODO(bunnei): Implement support for other processor IDs
ASSERT_MSG(false, "Unsupported thread processor ID: {}", processor_id);
break;
}
CASCADE_RESULT(SharedPtr<Thread> thread,
kernel.CreateThread(name, entry_point, priority, arg, processor_id, stack_top,
*current_process));
thread->context->SetFpscr(FPSCR_DEFAULT_NAN | FPSCR_FLUSH_TO_ZERO |
FPSCR_ROUND_TOZERO); // 0x03C00000
CASCADE_RESULT(*out_handle, current_process->handle_table.Create(std::move(thread)));
system.PrepareReschedule();
LOG_TRACE(Kernel_SVC,
"called entrypoint=0x{:08X} ({}), arg=0x{:08X}, stacktop=0x{:08X}, "
"threadpriority=0x{:08X}, processorid=0x{:08X} : created handle=0x{:08X}",
entry_point, name, arg, stack_top, priority, processor_id, *out_handle);
return RESULT_SUCCESS;
}
/// Called when a thread exits
void SVC::ExitThread() {
LOG_TRACE(Kernel_SVC, "called, pc=0x{:08X}", system.CPU().GetPC());
kernel.GetThreadManager().ExitCurrentThread();
system.PrepareReschedule();
}
/// Gets the priority for the specified thread
ResultCode SVC::GetThreadPriority(u32* priority, Handle handle) {
const SharedPtr<Thread> thread = kernel.GetCurrentProcess()->handle_table.Get<Thread>(handle);
if (thread == nullptr)
return ERR_INVALID_HANDLE;
*priority = thread->GetPriority();
return RESULT_SUCCESS;
}
/// Sets the priority for the specified thread
ResultCode SVC::SetThreadPriority(Handle handle, u32 priority) {
if (priority > ThreadPrioLowest) {
return ERR_OUT_OF_RANGE;
}
SharedPtr<Thread> thread = kernel.GetCurrentProcess()->handle_table.Get<Thread>(handle);
if (thread == nullptr)
return ERR_INVALID_HANDLE;
// Note: The kernel uses the current process's resource limit instead of
// the one from the thread owner's resource limit.
SharedPtr<ResourceLimit>& resource_limit = kernel.GetCurrentProcess()->resource_limit;
if (resource_limit->GetMaxResourceValue(ResourceTypes::PRIORITY) > priority) {
return ERR_NOT_AUTHORIZED;
}
thread->SetPriority(priority);
thread->UpdatePriority();
// Update the mutexes that this thread is waiting for
for (auto& mutex : thread->pending_mutexes)
mutex->UpdatePriority();
system.PrepareReschedule();
return RESULT_SUCCESS;
}
/// Create a mutex
ResultCode SVC::CreateMutex(Handle* out_handle, u32 initial_locked) {
SharedPtr<Mutex> mutex = kernel.CreateMutex(initial_locked != 0);
mutex->name = fmt::format("mutex-{:08x}", system.CPU().GetReg(14));
CASCADE_RESULT(*out_handle, kernel.GetCurrentProcess()->handle_table.Create(std::move(mutex)));
LOG_TRACE(Kernel_SVC, "called initial_locked={} : created handle=0x{:08X}",
initial_locked ? "true" : "false", *out_handle);
return RESULT_SUCCESS;
}
/// Release a mutex
ResultCode SVC::ReleaseMutex(Handle handle) {
LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}", handle);
SharedPtr<Mutex> mutex = kernel.GetCurrentProcess()->handle_table.Get<Mutex>(handle);
if (mutex == nullptr)
return ERR_INVALID_HANDLE;
return mutex->Release(kernel.GetThreadManager().GetCurrentThread());
}
/// Get the ID of the specified process
ResultCode SVC::GetProcessId(u32* process_id, Handle process_handle) {
LOG_TRACE(Kernel_SVC, "called process=0x{:08X}", process_handle);
const SharedPtr<Process> process =
kernel.GetCurrentProcess()->handle_table.Get<Process>(process_handle);
if (process == nullptr)
return ERR_INVALID_HANDLE;
*process_id = process->process_id;
return RESULT_SUCCESS;
}
/// Get the ID of the process that owns the specified thread
ResultCode SVC::GetProcessIdOfThread(u32* process_id, Handle thread_handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x{:08X}", thread_handle);
const SharedPtr<Thread> thread =
kernel.GetCurrentProcess()->handle_table.Get<Thread>(thread_handle);
if (thread == nullptr)
return ERR_INVALID_HANDLE;
const SharedPtr<Process> process = thread->owner_process;
ASSERT_MSG(process != nullptr, "Invalid parent process for thread={:#010X}", thread_handle);
*process_id = process->process_id;
return RESULT_SUCCESS;
}
/// Get the ID for the specified thread.
ResultCode SVC::GetThreadId(u32* thread_id, Handle handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x{:08X}", handle);
const SharedPtr<Thread> thread = kernel.GetCurrentProcess()->handle_table.Get<Thread>(handle);
if (thread == nullptr)
return ERR_INVALID_HANDLE;
*thread_id = thread->GetThreadId();
return RESULT_SUCCESS;
}
/// Creates a semaphore
ResultCode SVC::CreateSemaphore(Handle* out_handle, s32 initial_count, s32 max_count) {
CASCADE_RESULT(SharedPtr<Semaphore> semaphore,
kernel.CreateSemaphore(initial_count, max_count));
semaphore->name = fmt::format("semaphore-{:08x}", system.CPU().GetReg(14));
CASCADE_RESULT(*out_handle,
kernel.GetCurrentProcess()->handle_table.Create(std::move(semaphore)));
LOG_TRACE(Kernel_SVC, "called initial_count={}, max_count={}, created handle=0x{:08X}",
initial_count, max_count, *out_handle);
return RESULT_SUCCESS;
}
/// Releases a certain number of slots in a semaphore
ResultCode SVC::ReleaseSemaphore(s32* count, Handle handle, s32 release_count) {
LOG_TRACE(Kernel_SVC, "called release_count={}, handle=0x{:08X}", release_count, handle);
SharedPtr<Semaphore> semaphore =
kernel.GetCurrentProcess()->handle_table.Get<Semaphore>(handle);
if (semaphore == nullptr)
return ERR_INVALID_HANDLE;
CASCADE_RESULT(*count, semaphore->Release(release_count));
return RESULT_SUCCESS;
}
/// Query process memory
ResultCode SVC::QueryProcessMemory(MemoryInfo* memory_info, PageInfo* page_info,
Handle process_handle, u32 addr) {
SharedPtr<Process> process =
kernel.GetCurrentProcess()->handle_table.Get<Process>(process_handle);
if (process == nullptr)
return ERR_INVALID_HANDLE;
auto vma = process->vm_manager.FindVMA(addr);
if (vma == process->vm_manager.vma_map.end())
return ERR_INVALID_ADDRESS;
auto permissions = vma->second.permissions;
auto state = vma->second.meminfo_state;
// Query(Process)Memory merges vma with neighbours when they share the same state and
// permissions, regardless of their physical mapping.
auto mismatch = [permissions, state](const std::pair<VAddr, Kernel::VirtualMemoryArea>& v) {
return v.second.permissions != permissions || v.second.meminfo_state != state;
};
std::reverse_iterator rvma(vma);
auto lower = std::find_if(rvma, process->vm_manager.vma_map.crend(), mismatch);
--lower;
auto upper = std::find_if(vma, process->vm_manager.vma_map.cend(), mismatch);
--upper;
memory_info->base_address = lower->second.base;
memory_info->permission = static_cast<u32>(permissions);
memory_info->size = upper->second.base + upper->second.size - lower->second.base;
memory_info->state = static_cast<u32>(state);
page_info->flags = 0;
LOG_TRACE(Kernel_SVC, "called process=0x{:08X} addr=0x{:08X}", process_handle, addr);
return RESULT_SUCCESS;
}
/// Query memory
ResultCode SVC::QueryMemory(MemoryInfo* memory_info, PageInfo* page_info, u32 addr) {
return QueryProcessMemory(memory_info, page_info, CurrentProcess, addr);
}
/// Create an event
ResultCode SVC::CreateEvent(Handle* out_handle, u32 reset_type) {
SharedPtr<Event> evt = kernel.CreateEvent(static_cast<ResetType>(reset_type),
fmt::format("event-{:08x}", system.CPU().GetReg(14)));
CASCADE_RESULT(*out_handle, kernel.GetCurrentProcess()->handle_table.Create(std::move(evt)));
LOG_TRACE(Kernel_SVC, "called reset_type=0x{:08X} : created handle=0x{:08X}", reset_type,
*out_handle);
return RESULT_SUCCESS;
}
/// Duplicates a kernel handle
ResultCode SVC::DuplicateHandle(Handle* out, Handle handle) {
CASCADE_RESULT(*out, kernel.GetCurrentProcess()->handle_table.Duplicate(handle));
LOG_TRACE(Kernel_SVC, "duplicated 0x{:08X} to 0x{:08X}", handle, *out);
return RESULT_SUCCESS;
}
/// Signals an event
ResultCode SVC::SignalEvent(Handle handle) {
LOG_TRACE(Kernel_SVC, "called event=0x{:08X}", handle);
SharedPtr<Event> evt = kernel.GetCurrentProcess()->handle_table.Get<Event>(handle);
if (evt == nullptr)
return ERR_INVALID_HANDLE;
evt->Signal();
return RESULT_SUCCESS;
}
/// Clears an event
ResultCode SVC::ClearEvent(Handle handle) {
LOG_TRACE(Kernel_SVC, "called event=0x{:08X}", handle);
SharedPtr<Event> evt = kernel.GetCurrentProcess()->handle_table.Get<Event>(handle);
if (evt == nullptr)
return ERR_INVALID_HANDLE;
evt->Clear();
return RESULT_SUCCESS;
}
/// Creates a timer
ResultCode SVC::CreateTimer(Handle* out_handle, u32 reset_type) {
SharedPtr<Timer> timer = kernel.CreateTimer(
static_cast<ResetType>(reset_type), fmt ::format("timer-{:08x}", system.CPU().GetReg(14)));
CASCADE_RESULT(*out_handle, kernel.GetCurrentProcess()->handle_table.Create(std::move(timer)));
LOG_TRACE(Kernel_SVC, "called reset_type=0x{:08X} : created handle=0x{:08X}", reset_type,
*out_handle);
return RESULT_SUCCESS;
}
/// Clears a timer
ResultCode SVC::ClearTimer(Handle handle) {
LOG_TRACE(Kernel_SVC, "called timer=0x{:08X}", handle);
SharedPtr<Timer> timer = kernel.GetCurrentProcess()->handle_table.Get<Timer>(handle);
if (timer == nullptr)
return ERR_INVALID_HANDLE;
timer->Clear();
return RESULT_SUCCESS;
}
/// Starts a timer
ResultCode SVC::SetTimer(Handle handle, s64 initial, s64 interval) {
LOG_TRACE(Kernel_SVC, "called timer=0x{:08X}", handle);
if (initial < 0 || interval < 0) {
return ERR_OUT_OF_RANGE_KERNEL;
}
SharedPtr<Timer> timer = kernel.GetCurrentProcess()->handle_table.Get<Timer>(handle);
if (timer == nullptr)
return ERR_INVALID_HANDLE;
timer->Set(initial, interval);
return RESULT_SUCCESS;
}
/// Cancels a timer
ResultCode SVC::CancelTimer(Handle handle) {
LOG_TRACE(Kernel_SVC, "called timer=0x{:08X}", handle);
SharedPtr<Timer> timer = kernel.GetCurrentProcess()->handle_table.Get<Timer>(handle);
if (timer == nullptr)
return ERR_INVALID_HANDLE;
timer->Cancel();
return RESULT_SUCCESS;
}
/// Sleep the current thread
void SVC::SleepThread(s64 nanoseconds) {
LOG_TRACE(Kernel_SVC, "called nanoseconds={}", nanoseconds);
ThreadManager& thread_manager = kernel.GetThreadManager();
// Don't attempt to yield execution if there are no available threads to run,
// this way we avoid a useless reschedule to the idle thread.
if (nanoseconds == 0 && !thread_manager.HaveReadyThreads())
return;
// Sleep current thread and check for next thread to schedule
thread_manager.WaitCurrentThread_Sleep();
// Create an event to wake the thread up after the specified nanosecond delay has passed
thread_manager.GetCurrentThread()->WakeAfterDelay(nanoseconds);
system.PrepareReschedule();
}
/// This returns the total CPU ticks elapsed since the CPU was powered-on
s64 SVC::GetSystemTick() {
s64 result = system.CoreTiming().GetTicks();
// Advance time to defeat dumb games (like Cubic Ninja) that busy-wait for the frame to end.
// Measured time between two calls on a 9.2 o3DS with Ninjhax 1.1b
system.CoreTiming().AddTicks(150);
return result;
}
/// Creates a memory block at the specified address with the specified permissions and size
ResultCode SVC::CreateMemoryBlock(Handle* out_handle, u32 addr, u32 size, u32 my_permission,
u32 other_permission) {
if (size % Memory::PAGE_SIZE != 0)
return ERR_MISALIGNED_SIZE;
SharedPtr<SharedMemory> shared_memory = nullptr;
auto VerifyPermissions = [](MemoryPermission permission) {
// SharedMemory blocks can not be created with Execute permissions
switch (permission) {
case MemoryPermission::None:
case MemoryPermission::Read:
case MemoryPermission::Write:
case MemoryPermission::ReadWrite:
case MemoryPermission::DontCare:
return true;
default:
return false;
}
};
if (!VerifyPermissions(static_cast<MemoryPermission>(my_permission)) ||
!VerifyPermissions(static_cast<MemoryPermission>(other_permission)))
return ERR_INVALID_COMBINATION;
// TODO(Subv): Processes with memory type APPLICATION are not allowed
// to create memory blocks with addr = 0, any attempts to do so
// should return error 0xD92007EA.
if ((addr < Memory::PROCESS_IMAGE_VADDR || addr + size > Memory::SHARED_MEMORY_VADDR_END) &&
addr != 0) {
return ERR_INVALID_ADDRESS;
}
SharedPtr<Process> current_process = kernel.GetCurrentProcess();
// When trying to create a memory block with address = 0,
// if the process has the Shared Device Memory flag in the exheader,
// then we have to allocate from the same region as the caller process instead of the BASE
// region.
MemoryRegion region = MemoryRegion::BASE;
if (addr == 0 && current_process->flags.shared_device_mem)
region = current_process->flags.memory_region;
CASCADE_RESULT(shared_memory,
kernel.CreateSharedMemory(
current_process.get(), size, static_cast<MemoryPermission>(my_permission),
static_cast<MemoryPermission>(other_permission), addr, region));
CASCADE_RESULT(*out_handle, current_process->handle_table.Create(std::move(shared_memory)));
LOG_WARNING(Kernel_SVC, "called addr=0x{:08X}", addr);
return RESULT_SUCCESS;
}
ResultCode SVC::CreatePort(Handle* server_port, Handle* client_port, VAddr name_address,
u32 max_sessions) {
// TODO(Subv): Implement named ports.
ASSERT_MSG(name_address == 0, "Named ports are currently unimplemented");
SharedPtr<Process> current_process = kernel.GetCurrentProcess();
auto ports = kernel.CreatePortPair(max_sessions);
CASCADE_RESULT(*client_port, current_process->handle_table.Create(
std::move(std::get<SharedPtr<ClientPort>>(ports))));
// Note: The 3DS kernel also leaks the client port handle if the server port handle fails to be
// created.
CASCADE_RESULT(*server_port, current_process->handle_table.Create(
std::move(std::get<SharedPtr<ServerPort>>(ports))));
LOG_TRACE(Kernel_SVC, "called max_sessions={}", max_sessions);
return RESULT_SUCCESS;
}
ResultCode SVC::CreateSessionToPort(Handle* out_client_session, Handle client_port_handle) {
SharedPtr<Process> current_process = kernel.GetCurrentProcess();
SharedPtr<ClientPort> client_port =
current_process->handle_table.Get<ClientPort>(client_port_handle);
if (client_port == nullptr)
return ERR_INVALID_HANDLE;
CASCADE_RESULT(auto session, client_port->Connect());
CASCADE_RESULT(*out_client_session, current_process->handle_table.Create(std::move(session)));
return RESULT_SUCCESS;
}
ResultCode SVC::CreateSession(Handle* server_session, Handle* client_session) {
auto sessions = kernel.CreateSessionPair();
SharedPtr<Process> current_process = kernel.GetCurrentProcess();
auto& server = std::get<SharedPtr<ServerSession>>(sessions);
CASCADE_RESULT(*server_session, current_process->handle_table.Create(std::move(server)));
auto& client = std::get<SharedPtr<ClientSession>>(sessions);
CASCADE_RESULT(*client_session, current_process->handle_table.Create(std::move(client)));
LOG_TRACE(Kernel_SVC, "called");
return RESULT_SUCCESS;
}
ResultCode SVC::AcceptSession(Handle* out_server_session, Handle server_port_handle) {
SharedPtr<Process> current_process = kernel.GetCurrentProcess();
SharedPtr<ServerPort> server_port =
current_process->handle_table.Get<ServerPort>(server_port_handle);
if (server_port == nullptr)
return ERR_INVALID_HANDLE;
CASCADE_RESULT(auto session, server_port->Accept());
CASCADE_RESULT(*out_server_session, current_process->handle_table.Create(std::move(session)));
return RESULT_SUCCESS;
}
ResultCode SVC::GetSystemInfo(s64* out, u32 type, s32 param) {
LOG_TRACE(Kernel_SVC, "called type={} param={}", type, param);
switch ((SystemInfoType)type) {
case SystemInfoType::REGION_MEMORY_USAGE:
switch ((SystemInfoMemUsageRegion)param) {
case SystemInfoMemUsageRegion::ALL:
*out = kernel.GetMemoryRegion(MemoryRegion::APPLICATION)->used +
kernel.GetMemoryRegion(MemoryRegion::SYSTEM)->used +
kernel.GetMemoryRegion(MemoryRegion::BASE)->used;
break;
case SystemInfoMemUsageRegion::APPLICATION:
*out = kernel.GetMemoryRegion(MemoryRegion::APPLICATION)->used;
break;
case SystemInfoMemUsageRegion::SYSTEM:
*out = kernel.GetMemoryRegion(MemoryRegion::SYSTEM)->used;
break;
case SystemInfoMemUsageRegion::BASE:
*out = kernel.GetMemoryRegion(MemoryRegion::BASE)->used;
break;
default:
LOG_ERROR(Kernel_SVC, "unknown GetSystemInfo type=0 region: param={}", param);
*out = 0;
break;
}
break;
case SystemInfoType::KERNEL_ALLOCATED_PAGES:
LOG_ERROR(Kernel_SVC, "unimplemented GetSystemInfo type=2 param={}", param);
*out = 0;
break;
case SystemInfoType::KERNEL_SPAWNED_PIDS:
*out = 5;
break;
default:
LOG_ERROR(Kernel_SVC, "unknown GetSystemInfo type={} param={}", type, param);
*out = 0;
break;
}
// This function never returns an error, even if invalid parameters were passed.
return RESULT_SUCCESS;
}
ResultCode SVC::GetProcessInfo(s64* out, Handle process_handle, u32 type) {
LOG_TRACE(Kernel_SVC, "called process=0x{:08X} type={}", process_handle, type);
SharedPtr<Process> process =
kernel.GetCurrentProcess()->handle_table.Get<Process>(process_handle);
if (process == nullptr)
return ERR_INVALID_HANDLE;
switch (type) {
case 0:
case 2:
// TODO(yuriks): Type 0 returns a slightly higher number than type 2, but I'm not sure
// what's the difference between them.
*out = process->memory_used;
if (*out % Memory::PAGE_SIZE != 0) {
LOG_ERROR(Kernel_SVC, "called, memory size not page-aligned");
return ERR_MISALIGNED_SIZE;
}
break;
case 1:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
// These are valid, but not implemented yet
LOG_ERROR(Kernel_SVC, "unimplemented GetProcessInfo type={}", type);
break;
case 20:
*out = Memory::FCRAM_PADDR - process->GetLinearHeapAreaAddress();
break;
case 21:
case 22:
case 23:
// These return a different error value than higher invalid values
LOG_ERROR(Kernel_SVC, "unknown GetProcessInfo type={}", type);
return ERR_NOT_IMPLEMENTED;
default:
LOG_ERROR(Kernel_SVC, "unknown GetProcessInfo type={}", type);
return ERR_INVALID_ENUM_VALUE;
}
return RESULT_SUCCESS;
}
const SVC::FunctionDef SVC::SVC_Table[] = {
{0x00, nullptr, "Unknown"},
{0x01, &SVC::Wrap<&SVC::ControlMemory>, "ControlMemory"},
{0x02, &SVC::Wrap<&SVC::QueryMemory>, "QueryMemory"},
{0x03, &SVC::ExitProcess, "ExitProcess"},
{0x04, nullptr, "GetProcessAffinityMask"},
{0x05, nullptr, "SetProcessAffinityMask"},
{0x06, nullptr, "GetProcessIdealProcessor"},
{0x07, nullptr, "SetProcessIdealProcessor"},
{0x08, &SVC::Wrap<&SVC::CreateThread>, "CreateThread"},
{0x09, &SVC::ExitThread, "ExitThread"},
{0x0A, &SVC::Wrap<&SVC::SleepThread>, "SleepThread"},
{0x0B, &SVC::Wrap<&SVC::GetThreadPriority>, "GetThreadPriority"},
{0x0C, &SVC::Wrap<&SVC::SetThreadPriority>, "SetThreadPriority"},
{0x0D, nullptr, "GetThreadAffinityMask"},
{0x0E, nullptr, "SetThreadAffinityMask"},
{0x0F, nullptr, "GetThreadIdealProcessor"},
{0x10, nullptr, "SetThreadIdealProcessor"},
{0x11, nullptr, "GetCurrentProcessorNumber"},
{0x12, nullptr, "Run"},
{0x13, &SVC::Wrap<&SVC::CreateMutex>, "CreateMutex"},
{0x14, &SVC::Wrap<&SVC::ReleaseMutex>, "ReleaseMutex"},
{0x15, &SVC::Wrap<&SVC::CreateSemaphore>, "CreateSemaphore"},
{0x16, &SVC::Wrap<&SVC::ReleaseSemaphore>, "ReleaseSemaphore"},
{0x17, &SVC::Wrap<&SVC::CreateEvent>, "CreateEvent"},
{0x18, &SVC::Wrap<&SVC::SignalEvent>, "SignalEvent"},
{0x19, &SVC::Wrap<&SVC::ClearEvent>, "ClearEvent"},
{0x1A, &SVC::Wrap<&SVC::CreateTimer>, "CreateTimer"},
{0x1B, &SVC::Wrap<&SVC::SetTimer>, "SetTimer"},
{0x1C, &SVC::Wrap<&SVC::CancelTimer>, "CancelTimer"},
{0x1D, &SVC::Wrap<&SVC::ClearTimer>, "ClearTimer"},
{0x1E, &SVC::Wrap<&SVC::CreateMemoryBlock>, "CreateMemoryBlock"},
{0x1F, &SVC::Wrap<&SVC::MapMemoryBlock>, "MapMemoryBlock"},
{0x20, &SVC::Wrap<&SVC::UnmapMemoryBlock>, "UnmapMemoryBlock"},
{0x21, &SVC::Wrap<&SVC::CreateAddressArbiter>, "CreateAddressArbiter"},
{0x22, &SVC::Wrap<&SVC::ArbitrateAddress>, "ArbitrateAddress"},
{0x23, &SVC::Wrap<&SVC::CloseHandle>, "CloseHandle"},
{0x24, &SVC::Wrap<&SVC::WaitSynchronization1>, "WaitSynchronization1"},
{0x25, &SVC::Wrap<&SVC::WaitSynchronizationN>, "WaitSynchronizationN"},
{0x26, nullptr, "SignalAndWait"},
{0x27, &SVC::Wrap<&SVC::DuplicateHandle>, "DuplicateHandle"},
{0x28, &SVC::Wrap<&SVC::GetSystemTick>, "GetSystemTick"},
{0x29, nullptr, "GetHandleInfo"},
{0x2A, &SVC::Wrap<&SVC::GetSystemInfo>, "GetSystemInfo"},
{0x2B, &SVC::Wrap<&SVC::GetProcessInfo>, "GetProcessInfo"},
{0x2C, nullptr, "GetThreadInfo"},
{0x2D, &SVC::Wrap<&SVC::ConnectToPort>, "ConnectToPort"},
{0x2E, nullptr, "SendSyncRequest1"},
{0x2F, nullptr, "SendSyncRequest2"},
{0x30, nullptr, "SendSyncRequest3"},
{0x31, nullptr, "SendSyncRequest4"},
{0x32, &SVC::Wrap<&SVC::SendSyncRequest>, "SendSyncRequest"},
{0x33, nullptr, "OpenProcess"},
{0x34, nullptr, "OpenThread"},
{0x35, &SVC::Wrap<&SVC::GetProcessId>, "GetProcessId"},
{0x36, &SVC::Wrap<&SVC::GetProcessIdOfThread>, "GetProcessIdOfThread"},
{0x37, &SVC::Wrap<&SVC::GetThreadId>, "GetThreadId"},
{0x38, &SVC::Wrap<&SVC::GetResourceLimit>, "GetResourceLimit"},
{0x39, &SVC::Wrap<&SVC::GetResourceLimitLimitValues>, "GetResourceLimitLimitValues"},
{0x3A, &SVC::Wrap<&SVC::GetResourceLimitCurrentValues>, "GetResourceLimitCurrentValues"},
{0x3B, nullptr, "GetThreadContext"},
{0x3C, &SVC::Wrap<&SVC::Break>, "Break"},
{0x3D, &SVC::Wrap<&SVC::OutputDebugString>, "OutputDebugString"},
{0x3E, nullptr, "ControlPerformanceCounter"},
{0x3F, nullptr, "Unknown"},
{0x40, nullptr, "Unknown"},
{0x41, nullptr, "Unknown"},
{0x42, nullptr, "Unknown"},
{0x43, nullptr, "Unknown"},
{0x44, nullptr, "Unknown"},
{0x45, nullptr, "Unknown"},
{0x46, nullptr, "Unknown"},
{0x47, &SVC::Wrap<&SVC::CreatePort>, "CreatePort"},
{0x48, &SVC::Wrap<&SVC::CreateSessionToPort>, "CreateSessionToPort"},
{0x49, &SVC::Wrap<&SVC::CreateSession>, "CreateSession"},
{0x4A, &SVC::Wrap<&SVC::AcceptSession>, "AcceptSession"},
{0x4B, nullptr, "ReplyAndReceive1"},
{0x4C, nullptr, "ReplyAndReceive2"},
{0x4D, nullptr, "ReplyAndReceive3"},
{0x4E, nullptr, "ReplyAndReceive4"},
{0x4F, &SVC::Wrap<&SVC::ReplyAndReceive>, "ReplyAndReceive"},
{0x50, nullptr, "BindInterrupt"},
{0x51, nullptr, "UnbindInterrupt"},
{0x52, nullptr, "InvalidateProcessDataCache"},
{0x53, nullptr, "StoreProcessDataCache"},
{0x54, nullptr, "FlushProcessDataCache"},
{0x55, nullptr, "StartInterProcessDma"},
{0x56, nullptr, "StopDma"},
{0x57, nullptr, "GetDmaState"},
{0x58, nullptr, "RestartDma"},
{0x59, nullptr, "SetGpuProt"},
{0x5A, nullptr, "SetWifiEnabled"},
{0x5B, nullptr, "Unknown"},
{0x5C, nullptr, "Unknown"},
{0x5D, nullptr, "Unknown"},
{0x5E, nullptr, "Unknown"},
{0x5F, nullptr, "Unknown"},
{0x60, nullptr, "DebugActiveProcess"},
{0x61, nullptr, "BreakDebugProcess"},
{0x62, nullptr, "TerminateDebugProcess"},
{0x63, nullptr, "GetProcessDebugEvent"},
{0x64, nullptr, "ContinueDebugEvent"},
{0x65, nullptr, "GetProcessList"},
{0x66, nullptr, "GetThreadList"},
{0x67, nullptr, "GetDebugThreadContext"},
{0x68, nullptr, "SetDebugThreadContext"},
{0x69, nullptr, "QueryDebugProcessMemory"},
{0x6A, nullptr, "ReadProcessMemory"},
{0x6B, nullptr, "WriteProcessMemory"},
{0x6C, nullptr, "SetHardwareBreakPoint"},
{0x6D, nullptr, "GetDebugThreadParam"},
{0x6E, nullptr, "Unknown"},
{0x6F, nullptr, "Unknown"},
{0x70, nullptr, "ControlProcessMemory"},
{0x71, nullptr, "MapProcessMemory"},
{0x72, nullptr, "UnmapProcessMemory"},
{0x73, nullptr, "CreateCodeSet"},
{0x74, nullptr, "RandomStub"},
{0x75, nullptr, "CreateProcess"},
{0x76, nullptr, "TerminateProcess"},
{0x77, nullptr, "SetProcessResourceLimits"},
{0x78, nullptr, "CreateResourceLimit"},
{0x79, nullptr, "SetResourceLimitValues"},
{0x7A, nullptr, "AddCodeSegment"},
{0x7B, nullptr, "Backdoor"},
{0x7C, nullptr, "KernelSetState"},
{0x7D, &SVC::Wrap<&SVC::QueryProcessMemory>, "QueryProcessMemory"},
};
const SVC::FunctionDef* SVC::GetSVCInfo(u32 func_num) {
if (func_num >= ARRAY_SIZE(SVC_Table)) {
LOG_ERROR(Kernel_SVC, "unknown svc=0x{:02X}", func_num);
return nullptr;
}
return &SVC_Table[func_num];
}
MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70));
void SVC::CallSVC(u32 immediate) {
MICROPROFILE_SCOPE(Kernel_SVC);
// Lock the global kernel mutex when we enter the kernel HLE.
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
DEBUG_ASSERT_MSG(kernel.GetCurrentProcess()->status == ProcessStatus::Running,
"Running threads from exiting processes is unimplemented");
const FunctionDef* info = GetSVCInfo(immediate);
if (info) {
if (info->func) {
(this->*(info->func))();
} else {
LOG_ERROR(Kernel_SVC, "unimplemented SVC function {}(..)", info->name);
}
}
}
SVC::SVC(Core::System& system) : system(system), kernel(system.Kernel()) {}
u32 SVC::GetReg(std::size_t n) {
return system.CPU().GetReg(static_cast<int>(n));
}
void SVC::SetReg(std::size_t n, u32 value) {
system.CPU().SetReg(static_cast<int>(n), value);
}
SVCContext::SVCContext(Core::System& system) : impl(std::make_unique<SVC>(system)) {}
SVCContext::~SVCContext() = default;
void SVCContext::CallSVC(u32 immediate) {
impl->CallSVC(immediate);
}
} // namespace Kernel