citra/src/core/hle/service/gsp_gpu.cpp
2017-02-02 23:07:44 -08:00

792 lines
29 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/bit_field.h"
#include "common/microprofile.h"
#include "core/hle/kernel/event.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/result.h"
#include "core/hw/gpu.h"
#include "core/hw/hw.h"
#include "core/hw/lcd.h"
#include "core/memory.h"
#include "gsp_gpu.h"
#include "video_core/debug_utils/debug_utils.h"
#include "video_core/gpu_debugger.h"
// Main graphics debugger object - TODO: Here is probably not the best place for this
GraphicsDebugger g_debugger;
namespace Service {
namespace GSP {
// Beginning address of HW regs
const u32 REGS_BEGIN = 0x1EB00000;
const ResultCode ERR_GSP_REGS_OUTOFRANGE_OR_MISALIGNED(
ErrorDescription::OutofRangeOrMisalignedAddress, ErrorModule::GX, ErrorSummary::InvalidArgument,
ErrorLevel::Usage); // 0xE0E02A01
const ResultCode ERR_GSP_REGS_MISALIGNED(ErrorDescription::MisalignedSize, ErrorModule::GX,
ErrorSummary::InvalidArgument,
ErrorLevel::Usage); // 0xE0E02BF2
const ResultCode ERR_GSP_REGS_INVALID_SIZE(ErrorDescription::InvalidSize, ErrorModule::GX,
ErrorSummary::InvalidArgument,
ErrorLevel::Usage); // 0xE0E02BEC
/// Event triggered when GSP interrupt has been signalled
Kernel::SharedPtr<Kernel::Event> g_interrupt_event;
/// GSP shared memoryings
Kernel::SharedPtr<Kernel::SharedMemory> g_shared_memory;
/// Thread index into interrupt relay queue
u32 g_thread_id = 0;
static bool gpu_right_acquired = false;
static bool first_initialization = true;
/// Gets a pointer to a thread command buffer in GSP shared memory
static inline u8* GetCommandBuffer(u32 thread_id) {
return g_shared_memory->GetPointer(0x800 + (thread_id * sizeof(CommandBuffer)));
}
FrameBufferUpdate* GetFrameBufferInfo(u32 thread_id, u32 screen_index) {
DEBUG_ASSERT_MSG(screen_index < 2, "Invalid screen index");
// For each thread there are two FrameBufferUpdate fields
u32 offset = 0x200 + (2 * thread_id + screen_index) * sizeof(FrameBufferUpdate);
u8* ptr = g_shared_memory->GetPointer(offset);
return reinterpret_cast<FrameBufferUpdate*>(ptr);
}
/// Gets a pointer to the interrupt relay queue for a given thread index
static inline InterruptRelayQueue* GetInterruptRelayQueue(u32 thread_id) {
u8* ptr = g_shared_memory->GetPointer(sizeof(InterruptRelayQueue) * thread_id);
return reinterpret_cast<InterruptRelayQueue*>(ptr);
}
/**
* Writes a single GSP GPU hardware registers with a single u32 value
* (For internal use.)
*
* @param base_address The address of the register in question
* @param data Data to be written
*/
static void WriteSingleHWReg(u32 base_address, u32 data) {
DEBUG_ASSERT_MSG((base_address & 3) == 0 && base_address < 0x420000,
"Write address out of range or misaligned");
HW::Write<u32>(base_address + REGS_BEGIN, data);
}
/**
* Writes sequential GSP GPU hardware registers using an array of source data
*
* @param base_address The address of the first register in the sequence
* @param size_in_bytes The number of registers to update (size of data)
* @param data_vaddr A pointer to the source data
* @return RESULT_SUCCESS if the parameters are valid, error code otherwise
*/
static ResultCode WriteHWRegs(u32 base_address, u32 size_in_bytes, VAddr data_vaddr) {
// This magic number is verified to be done by the gsp module
const u32 max_size_in_bytes = 0x80;
if (base_address & 3 || base_address >= 0x420000) {
LOG_ERROR(Service_GSP,
"Write address was out of range or misaligned! (address=0x%08x, size=0x%08x)",
base_address, size_in_bytes);
return ERR_GSP_REGS_OUTOFRANGE_OR_MISALIGNED;
} else if (size_in_bytes <= max_size_in_bytes) {
if (size_in_bytes & 3) {
LOG_ERROR(Service_GSP, "Misaligned size 0x%08x", size_in_bytes);
return ERR_GSP_REGS_MISALIGNED;
} else {
while (size_in_bytes > 0) {
WriteSingleHWReg(base_address, Memory::Read32(data_vaddr));
size_in_bytes -= 4;
data_vaddr += 4;
base_address += 4;
}
return RESULT_SUCCESS;
}
} else {
LOG_ERROR(Service_GSP, "Out of range size 0x%08x", size_in_bytes);
return ERR_GSP_REGS_INVALID_SIZE;
}
}
/**
* Updates sequential GSP GPU hardware registers using parallel arrays of source data and masks.
* For each register, the value is updated only where the mask is high
*
* @param base_address The address of the first register in the sequence
* @param size_in_bytes The number of registers to update (size of data)
* @param data A pointer to the source data to use for updates
* @param masks A pointer to the masks
* @return RESULT_SUCCESS if the parameters are valid, error code otherwise
*/
static ResultCode WriteHWRegsWithMask(u32 base_address, u32 size_in_bytes, VAddr data_vaddr,
VAddr masks_vaddr) {
// This magic number is verified to be done by the gsp module
const u32 max_size_in_bytes = 0x80;
if (base_address & 3 || base_address >= 0x420000) {
LOG_ERROR(Service_GSP,
"Write address was out of range or misaligned! (address=0x%08x, size=0x%08x)",
base_address, size_in_bytes);
return ERR_GSP_REGS_OUTOFRANGE_OR_MISALIGNED;
} else if (size_in_bytes <= max_size_in_bytes) {
if (size_in_bytes & 3) {
LOG_ERROR(Service_GSP, "Misaligned size 0x%08x", size_in_bytes);
return ERR_GSP_REGS_MISALIGNED;
} else {
while (size_in_bytes > 0) {
const u32 reg_address = base_address + REGS_BEGIN;
u32 reg_value;
HW::Read<u32>(reg_value, reg_address);
u32 data = Memory::Read32(data_vaddr);
u32 mask = Memory::Read32(masks_vaddr);
// Update the current value of the register only for set mask bits
reg_value = (reg_value & ~mask) | (data & mask);
WriteSingleHWReg(base_address, reg_value);
size_in_bytes -= 4;
data_vaddr += 4;
masks_vaddr += 4;
base_address += 4;
}
return RESULT_SUCCESS;
}
} else {
LOG_ERROR(Service_GSP, "Out of range size 0x%08x", size_in_bytes);
return ERR_GSP_REGS_INVALID_SIZE;
}
}
/**
* GSP_GPU::WriteHWRegs service function
*
* Writes sequential GSP GPU hardware registers
*
* Inputs:
* 1 : address of first GPU register
* 2 : number of registers to write sequentially
* 4 : pointer to source data array
*/
static void WriteHWRegs(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 reg_addr = cmd_buff[1];
u32 size = cmd_buff[2];
VAddr src = cmd_buff[4];
cmd_buff[1] = WriteHWRegs(reg_addr, size, src).raw;
}
/**
* GSP_GPU::WriteHWRegsWithMask service function
*
* Updates sequential GSP GPU hardware registers using masks
*
* Inputs:
* 1 : address of first GPU register
* 2 : number of registers to update sequentially
* 4 : pointer to source data array
* 6 : pointer to mask array
*/
static void WriteHWRegsWithMask(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 reg_addr = cmd_buff[1];
u32 size = cmd_buff[2];
VAddr src_data = cmd_buff[4];
VAddr mask_data = cmd_buff[6];
cmd_buff[1] = WriteHWRegsWithMask(reg_addr, size, src_data, mask_data).raw;
}
/// Read a GSP GPU hardware register
static void ReadHWRegs(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 reg_addr = cmd_buff[1];
u32 size = cmd_buff[2];
// TODO: Return proper error codes
if (reg_addr + size >= 0x420000) {
LOG_ERROR(Service_GSP, "Read address out of range! (address=0x%08x, size=0x%08x)", reg_addr,
size);
return;
}
// size should be word-aligned
if ((size % 4) != 0) {
LOG_ERROR(Service_GSP, "Invalid size 0x%08x", size);
return;
}
VAddr dst_vaddr = cmd_buff[0x41];
while (size > 0) {
u32 value;
HW::Read<u32>(value, reg_addr + REGS_BEGIN);
Memory::Write32(dst_vaddr, value);
size -= 4;
dst_vaddr += 4;
reg_addr += 4;
}
}
ResultCode SetBufferSwap(u32 screen_id, const FrameBufferInfo& info) {
u32 base_address = 0x400000;
PAddr phys_address_left = Memory::VirtualToPhysicalAddress(info.address_left);
PAddr phys_address_right = Memory::VirtualToPhysicalAddress(info.address_right);
if (info.active_fb == 0) {
WriteSingleHWReg(
base_address +
4 * static_cast<u32>(GPU_REG_INDEX(framebuffer_config[screen_id].address_left1)),
phys_address_left);
WriteSingleHWReg(
base_address +
4 * static_cast<u32>(GPU_REG_INDEX(framebuffer_config[screen_id].address_right1)),
phys_address_right);
} else {
WriteSingleHWReg(
base_address +
4 * static_cast<u32>(GPU_REG_INDEX(framebuffer_config[screen_id].address_left2)),
phys_address_left);
WriteSingleHWReg(
base_address +
4 * static_cast<u32>(GPU_REG_INDEX(framebuffer_config[screen_id].address_right2)),
phys_address_right);
}
WriteSingleHWReg(base_address +
4 * static_cast<u32>(GPU_REG_INDEX(framebuffer_config[screen_id].stride)),
info.stride);
WriteSingleHWReg(
base_address +
4 * static_cast<u32>(GPU_REG_INDEX(framebuffer_config[screen_id].color_format)),
info.format);
WriteSingleHWReg(
base_address + 4 * static_cast<u32>(GPU_REG_INDEX(framebuffer_config[screen_id].active_fb)),
info.shown_fb);
if (Pica::g_debug_context)
Pica::g_debug_context->OnEvent(Pica::DebugContext::Event::BufferSwapped, nullptr);
if (screen_id == 0) {
MicroProfileFlip();
}
return RESULT_SUCCESS;
}
/**
* GSP_GPU::SetBufferSwap service function
*
* Updates GPU display framebuffer configuration using the specified parameters.
*
* Inputs:
* 1 : Screen ID (0 = top screen, 1 = bottom screen)
* 2-7 : FrameBufferInfo structure
* Outputs:
* 1: Result code
*/
static void SetBufferSwap(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 screen_id = cmd_buff[1];
FrameBufferInfo* fb_info = (FrameBufferInfo*)&cmd_buff[2];
cmd_buff[1] = SetBufferSwap(screen_id, *fb_info).raw;
}
/**
* GSP_GPU::FlushDataCache service function
*
* This Function is a no-op, We aren't emulating the CPU cache any time soon.
*
* Inputs:
* 1 : Address
* 2 : Size
* 3 : Value 0, some descriptor for the KProcess Handle
* 4 : KProcess handle
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
static void FlushDataCache(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 address = cmd_buff[1];
u32 size = cmd_buff[2];
u32 process = cmd_buff[4];
// TODO(purpasmart96): Verify return header on HW
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
LOG_DEBUG(Service_GSP, "(STUBBED) called address=0x%08X, size=0x%08X, process=0x%08X", address,
size, process);
}
/**
* GSP_GPU::SetAxiConfigQoSMode service function
* Inputs:
* 1 : Mode, unused in emulator
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
static void SetAxiConfigQoSMode(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 mode = cmd_buff[1];
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
LOG_DEBUG(Service_GSP, "(STUBBED) called mode=0x%08X", mode);
}
/**
* GSP_GPU::RegisterInterruptRelayQueue service function
* Inputs:
* 1 : "Flags" field, purpose is unknown
* 3 : Handle to GSP synchronization event
* Outputs:
* 1 : Result of function, 0x2A07 on success, otherwise error code
* 2 : Thread index into GSP command buffer
* 4 : Handle to GSP shared memory
*/
static void RegisterInterruptRelayQueue(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 flags = cmd_buff[1];
g_interrupt_event = Kernel::g_handle_table.Get<Kernel::Event>(cmd_buff[3]);
// TODO(mailwl): return right error code instead assert
ASSERT_MSG((g_interrupt_event != nullptr), "handle is not valid!");
g_interrupt_event->name = "GSP_GPU::interrupt_event";
if (first_initialization) {
// This specific code is required for a successful initialization, rather than 0
first_initialization = false;
cmd_buff[1] = ResultCode(ErrorDescription::GPU_FirstInitialization, ErrorModule::GX,
ErrorSummary::Success, ErrorLevel::Success)
.raw;
} else {
cmd_buff[1] = RESULT_SUCCESS.raw;
}
cmd_buff[2] = g_thread_id++; // Thread ID
cmd_buff[4] = Kernel::g_handle_table.Create(g_shared_memory).MoveFrom(); // GSP shared memory
g_interrupt_event->Signal(); // TODO(bunnei): Is this correct?
LOG_WARNING(Service_GSP, "called, flags=0x%08X", flags);
}
/**
* GSP_GPU::UnregisterInterruptRelayQueue service function
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
static void UnregisterInterruptRelayQueue(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
g_thread_id = 0;
g_interrupt_event = nullptr;
cmd_buff[1] = RESULT_SUCCESS.raw;
LOG_WARNING(Service_GSP, "(STUBBED) called");
}
/**
* Signals that the specified interrupt type has occurred to userland code
* @param interrupt_id ID of interrupt that is being signalled
* @todo This should probably take a thread_id parameter and only signal this thread?
* @todo This probably does not belong in the GSP module, instead move to video_core
*/
void SignalInterrupt(InterruptId interrupt_id) {
if (!gpu_right_acquired) {
return;
}
if (nullptr == g_interrupt_event) {
LOG_WARNING(Service_GSP, "cannot synchronize until GSP event has been created!");
return;
}
if (nullptr == g_shared_memory) {
LOG_WARNING(Service_GSP, "cannot synchronize until GSP shared memory has been created!");
return;
}
for (int thread_id = 0; thread_id < 0x4; ++thread_id) {
InterruptRelayQueue* interrupt_relay_queue = GetInterruptRelayQueue(thread_id);
u8 next = interrupt_relay_queue->index;
next += interrupt_relay_queue->number_interrupts;
next = next % 0x34; // 0x34 is the number of interrupt slots
interrupt_relay_queue->number_interrupts += 1;
interrupt_relay_queue->slot[next] = interrupt_id;
interrupt_relay_queue->error_code = 0x0; // No error
// Update framebuffer information if requested
// TODO(yuriks): Confirm where this code should be called. It is definitely updated without
// executing any GSP commands, only waiting on the event.
int screen_id =
(interrupt_id == InterruptId::PDC0) ? 0 : (interrupt_id == InterruptId::PDC1) ? 1 : -1;
if (screen_id != -1) {
FrameBufferUpdate* info = GetFrameBufferInfo(thread_id, screen_id);
if (info->is_dirty) {
SetBufferSwap(screen_id, info->framebuffer_info[info->index]);
info->is_dirty.Assign(false);
}
}
}
g_interrupt_event->Signal();
}
MICROPROFILE_DEFINE(GPU_GSP_DMA, "GPU", "GSP DMA", MP_RGB(100, 0, 255));
/// Executes the next GSP command
static void ExecuteCommand(const Command& command, u32 thread_id) {
// Utility function to convert register ID to address
static auto WriteGPURegister = [](u32 id, u32 data) {
GPU::Write<u32>(0x1EF00000 + 4 * id, data);
};
switch (command.id) {
// GX request DMA - typically used for copying memory from GSP heap to VRAM
case CommandId::REQUEST_DMA: {
MICROPROFILE_SCOPE(GPU_GSP_DMA);
// TODO: Consider attempting rasterizer-accelerated surface blit if that usage is ever
// possible/likely
Memory::RasterizerFlushRegion(
Memory::VirtualToPhysicalAddress(command.dma_request.source_address),
command.dma_request.size);
Memory::RasterizerFlushAndInvalidateRegion(
Memory::VirtualToPhysicalAddress(command.dma_request.dest_address),
command.dma_request.size);
// TODO(Subv): These memory accesses should not go through the application's memory mapping.
// They should go through the GSP module's memory mapping.
Memory::CopyBlock(command.dma_request.dest_address, command.dma_request.source_address,
command.dma_request.size);
SignalInterrupt(InterruptId::DMA);
break;
}
// TODO: This will need some rework in the future. (why?)
case CommandId::SUBMIT_GPU_CMDLIST: {
auto& params = command.submit_gpu_cmdlist;
if (params.do_flush) {
// This flag flushes the command list (params.address, params.size) from the cache.
// Command lists are not processed by the hardware renderer, so we don't need to
// actually flush them in Citra.
}
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(command_processor_config.address)),
Memory::VirtualToPhysicalAddress(params.address) >> 3);
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(command_processor_config.size)),
params.size);
// TODO: Not sure if we are supposed to always write this .. seems to trigger processing
// though
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(command_processor_config.trigger)), 1);
// TODO(yuriks): Figure out the meaning of the `flags` field.
break;
}
// It's assumed that the two "blocks" behave equivalently.
// Presumably this is done simply to allow two memory fills to run in parallel.
case CommandId::SET_MEMORY_FILL: {
auto& params = command.memory_fill;
if (params.start1 != 0) {
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].address_start)),
Memory::VirtualToPhysicalAddress(params.start1) >> 3);
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].address_end)),
Memory::VirtualToPhysicalAddress(params.end1) >> 3);
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].value_32bit)),
params.value1);
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].control)),
params.control1);
}
if (params.start2 != 0) {
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].address_start)),
Memory::VirtualToPhysicalAddress(params.start2) >> 3);
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].address_end)),
Memory::VirtualToPhysicalAddress(params.end2) >> 3);
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].value_32bit)),
params.value2);
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].control)),
params.control2);
}
break;
}
case CommandId::SET_DISPLAY_TRANSFER: {
auto& params = command.display_transfer;
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(display_transfer_config.input_address)),
Memory::VirtualToPhysicalAddress(params.in_buffer_address) >> 3);
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(display_transfer_config.output_address)),
Memory::VirtualToPhysicalAddress(params.out_buffer_address) >> 3);
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(display_transfer_config.input_size)),
params.in_buffer_size);
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(display_transfer_config.output_size)),
params.out_buffer_size);
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(display_transfer_config.flags)),
params.flags);
WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(display_transfer_config.trigger)), 1);
break;
}
case CommandId::SET_TEXTURE_COPY: {
auto& params = command.texture_copy;
WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.input_address),
Memory::VirtualToPhysicalAddress(params.in_buffer_address) >> 3);
WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.output_address),
Memory::VirtualToPhysicalAddress(params.out_buffer_address) >> 3);
WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.texture_copy.size),
params.size);
WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.texture_copy.input_size),
params.in_width_gap);
WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.texture_copy.output_size),
params.out_width_gap);
WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.flags), params.flags);
// NOTE: Actual GSP ORs 1 with current register instead of overwriting. Doesn't seem to
// matter.
WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.trigger), 1);
break;
}
case CommandId::CACHE_FLUSH: {
// NOTE: Rasterizer flushing handled elsewhere in CPU read/write and other GPU handlers
// Use command.cache_flush.regions to implement this handler
break;
}
default:
LOG_ERROR(Service_GSP, "unknown command 0x%08X", (int)command.id.Value());
}
if (Pica::g_debug_context)
Pica::g_debug_context->OnEvent(Pica::DebugContext::Event::GSPCommandProcessed,
(void*)&command);
}
/**
* GSP_GPU::SetLcdForceBlack service function
*
* Enable or disable REG_LCDCOLORFILL with the color black.
*
* Inputs:
* 1: Black color fill flag (0 = don't fill, !0 = fill)
* Outputs:
* 1: Result code
*/
static void SetLcdForceBlack(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
bool enable_black = cmd_buff[1] != 0;
LCD::Regs::ColorFill data = {0};
// Since data is already zeroed, there is no need to explicitly set
// the color to black (all zero).
data.is_enabled.Assign(enable_black);
LCD::Write(HW::VADDR_LCD + 4 * LCD_REG_INDEX(color_fill_top), data.raw); // Top LCD
LCD::Write(HW::VADDR_LCD + 4 * LCD_REG_INDEX(color_fill_bottom), data.raw); // Bottom LCD
cmd_buff[1] = RESULT_SUCCESS.raw;
}
/// This triggers handling of the GX command written to the command buffer in shared memory.
static void TriggerCmdReqQueue(Interface* self) {
// Iterate through each thread's command queue...
for (unsigned thread_id = 0; thread_id < 0x4; ++thread_id) {
CommandBuffer* command_buffer = (CommandBuffer*)GetCommandBuffer(thread_id);
// Iterate through each command...
for (unsigned i = 0; i < command_buffer->number_commands; ++i) {
g_debugger.GXCommandProcessed((u8*)&command_buffer->commands[i]);
// Decode and execute command
ExecuteCommand(command_buffer->commands[i], thread_id);
// Indicates that command has completed
command_buffer->number_commands.Assign(command_buffer->number_commands - 1);
}
}
u32* cmd_buff = Kernel::GetCommandBuffer();
cmd_buff[1] = 0; // No error
}
/**
* GSP_GPU::ImportDisplayCaptureInfo service function
*
* Returns information about the current framebuffer state
*
* Inputs:
* 0: Header 0x00180000
* Outputs:
* 0: Header Code[0x00180240]
* 1: Result code
* 2: Left framebuffer virtual address for the main screen
* 3: Right framebuffer virtual address for the main screen
* 4: Main screen framebuffer format
* 5: Main screen framebuffer width
* 6: Left framebuffer virtual address for the bottom screen
* 7: Right framebuffer virtual address for the bottom screen
* 8: Bottom screen framebuffer format
* 9: Bottom screen framebuffer width
*/
static void ImportDisplayCaptureInfo(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
// TODO(Subv): We're always returning the framebuffer structures for thread_id = 0,
// because we only support a single running application at a time.
// This should always return the framebuffer data that is currently displayed on the screen.
u32 thread_id = 0;
FrameBufferUpdate* top_screen = GetFrameBufferInfo(thread_id, 0);
FrameBufferUpdate* bottom_screen = GetFrameBufferInfo(thread_id, 1);
cmd_buff[0] = IPC::MakeHeader(0x18, 0x9, 0);
cmd_buff[1] = RESULT_SUCCESS.raw;
// Top Screen
cmd_buff[2] = top_screen->framebuffer_info[top_screen->index].address_left;
cmd_buff[3] = top_screen->framebuffer_info[top_screen->index].address_right;
cmd_buff[4] = top_screen->framebuffer_info[top_screen->index].format;
cmd_buff[5] = top_screen->framebuffer_info[top_screen->index].stride;
// Bottom Screen
cmd_buff[6] = bottom_screen->framebuffer_info[bottom_screen->index].address_left;
cmd_buff[7] = bottom_screen->framebuffer_info[bottom_screen->index].address_right;
cmd_buff[8] = bottom_screen->framebuffer_info[bottom_screen->index].format;
cmd_buff[9] = bottom_screen->framebuffer_info[bottom_screen->index].stride;
LOG_WARNING(Service_GSP, "called");
}
/**
* GSP_GPU::AcquireRight service function
* Outputs:
* 1: Result code
*/
static void AcquireRight(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
gpu_right_acquired = true;
cmd_buff[1] = RESULT_SUCCESS.raw;
LOG_WARNING(Service_GSP, "called");
}
/**
* GSP_GPU::ReleaseRight service function
* Outputs:
* 1: Result code
*/
static void ReleaseRight(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
gpu_right_acquired = false;
cmd_buff[1] = RESULT_SUCCESS.raw;
LOG_WARNING(Service_GSP, "called");
}
/**
* GSP_GPU::StoreDataCache service function
*
* This Function is a no-op, We aren't emulating the CPU cache any time soon.
*
* Inputs:
* 0 : Header code [0x001F0082]
* 1 : Address
* 2 : Size
* 3 : Value 0, some descriptor for the KProcess Handle
* 4 : KProcess handle
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
static void StoreDataCache(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 address = cmd_buff[1];
u32 size = cmd_buff[2];
u32 process = cmd_buff[4];
cmd_buff[0] = IPC::MakeHeader(0x1F, 0x1, 0);
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
LOG_DEBUG(Service_GSP, "(STUBBED) called address=0x%08X, size=0x%08X, process=0x%08X", address,
size, process);
}
const Interface::FunctionInfo FunctionTable[] = {
{0x00010082, WriteHWRegs, "WriteHWRegs"},
{0x00020084, WriteHWRegsWithMask, "WriteHWRegsWithMask"},
{0x00030082, nullptr, "WriteHWRegRepeat"},
{0x00040080, ReadHWRegs, "ReadHWRegs"},
{0x00050200, SetBufferSwap, "SetBufferSwap"},
{0x00060082, nullptr, "SetCommandList"},
{0x000700C2, nullptr, "RequestDma"},
{0x00080082, FlushDataCache, "FlushDataCache"},
{0x00090082, nullptr, "InvalidateDataCache"},
{0x000A0044, nullptr, "RegisterInterruptEvents"},
{0x000B0040, SetLcdForceBlack, "SetLcdForceBlack"},
{0x000C0000, TriggerCmdReqQueue, "TriggerCmdReqQueue"},
{0x000D0140, nullptr, "SetDisplayTransfer"},
{0x000E0180, nullptr, "SetTextureCopy"},
{0x000F0200, nullptr, "SetMemoryFill"},
{0x00100040, SetAxiConfigQoSMode, "SetAxiConfigQoSMode"},
{0x00110040, nullptr, "SetPerfLogMode"},
{0x00120000, nullptr, "GetPerfLog"},
{0x00130042, RegisterInterruptRelayQueue, "RegisterInterruptRelayQueue"},
{0x00140000, UnregisterInterruptRelayQueue, "UnregisterInterruptRelayQueue"},
{0x00150002, nullptr, "TryAcquireRight"},
{0x00160042, AcquireRight, "AcquireRight"},
{0x00170000, ReleaseRight, "ReleaseRight"},
{0x00180000, ImportDisplayCaptureInfo, "ImportDisplayCaptureInfo"},
{0x00190000, nullptr, "SaveVramSysArea"},
{0x001A0000, nullptr, "RestoreVramSysArea"},
{0x001B0000, nullptr, "ResetGpuCore"},
{0x001C0040, nullptr, "SetLedForceOff"},
{0x001D0040, nullptr, "SetTestCommand"},
{0x001E0080, nullptr, "SetInternalPriorities"},
{0x001F0082, StoreDataCache, "StoreDataCache"},
};
GSP_GPU::GSP_GPU() {
Register(FunctionTable);
g_interrupt_event = nullptr;
using Kernel::MemoryPermission;
g_shared_memory = Kernel::SharedMemory::Create(nullptr, 0x1000, MemoryPermission::ReadWrite,
MemoryPermission::ReadWrite, 0,
Kernel::MemoryRegion::BASE, "GSP:SharedMemory");
g_thread_id = 0;
gpu_right_acquired = false;
first_initialization = true;
}
GSP_GPU::~GSP_GPU() {
g_interrupt_event = nullptr;
g_shared_memory = nullptr;
gpu_right_acquired = false;
}
} // namespace GSP
} // namespace Service