yuzu-mainline/src/core/hle/kernel/hle_ipc.cpp
Morph 99ceb03a1c general: Convert source file copyright comments over to SPDX
This formats all copyright comments according to SPDX formatting guidelines.
Additionally, this resolves the remaining GPLv2 only licensed files by relicensing them to GPLv2.0-or-later.
2022-04-23 05:55:32 -04:00

409 lines
16 KiB
C++

// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm>
#include <array>
#include <sstream>
#include <boost/range/algorithm_ext/erase.hpp>
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "core/hle/ipc_helpers.h"
#include "core/hle/kernel/hle_ipc.h"
#include "core/hle/kernel/k_auto_object.h"
#include "core/hle/kernel/k_handle_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_server_session.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/kernel.h"
#include "core/memory.h"
namespace Kernel {
SessionRequestHandler::SessionRequestHandler(KernelCore& kernel_, const char* service_name_,
ServiceThreadType thread_type)
: kernel{kernel_} {
if (thread_type == ServiceThreadType::CreateNew) {
service_thread = kernel.CreateServiceThread(service_name_);
} else {
service_thread = kernel.GetDefaultServiceThread();
}
}
SessionRequestHandler::~SessionRequestHandler() {
kernel.ReleaseServiceThread(service_thread);
}
SessionRequestManager::SessionRequestManager(KernelCore& kernel_) : kernel{kernel_} {}
SessionRequestManager::~SessionRequestManager() = default;
bool SessionRequestManager::HasSessionRequestHandler(const HLERequestContext& context) const {
if (IsDomain() && context.HasDomainMessageHeader()) {
const auto& message_header = context.GetDomainMessageHeader();
const auto object_id = message_header.object_id;
if (object_id > DomainHandlerCount()) {
LOG_CRITICAL(IPC, "object_id {} is too big!", object_id);
return false;
}
return !DomainHandler(object_id - 1).expired();
} else {
return session_handler != nullptr;
}
}
void SessionRequestHandler::ClientConnected(KServerSession* session) {
session->ClientConnected(shared_from_this());
// Ensure our server session is tracked globally.
kernel.RegisterServerObject(session);
}
void SessionRequestHandler::ClientDisconnected(KServerSession* session) {
session->ClientDisconnected();
}
HLERequestContext::HLERequestContext(KernelCore& kernel_, Core::Memory::Memory& memory_,
KServerSession* server_session_, KThread* thread_)
: server_session(server_session_), thread(thread_), kernel{kernel_}, memory{memory_} {
cmd_buf[0] = 0;
}
HLERequestContext::~HLERequestContext() = default;
void HLERequestContext::ParseCommandBuffer(const KHandleTable& handle_table, u32_le* src_cmdbuf,
bool incoming) {
IPC::RequestParser rp(src_cmdbuf);
command_header = rp.PopRaw<IPC::CommandHeader>();
if (command_header->IsCloseCommand()) {
// Close does not populate the rest of the IPC header
return;
}
// If handle descriptor is present, add size of it
if (command_header->enable_handle_descriptor) {
handle_descriptor_header = rp.PopRaw<IPC::HandleDescriptorHeader>();
if (handle_descriptor_header->send_current_pid) {
pid = rp.Pop<u64>();
}
if (incoming) {
// Populate the object lists with the data in the IPC request.
for (u32 handle = 0; handle < handle_descriptor_header->num_handles_to_copy; ++handle) {
incoming_copy_handles.push_back(rp.Pop<Handle>());
}
for (u32 handle = 0; handle < handle_descriptor_header->num_handles_to_move; ++handle) {
incoming_move_handles.push_back(rp.Pop<Handle>());
}
} else {
// For responses we just ignore the handles, they're empty and will be populated when
// translating the response.
rp.Skip(handle_descriptor_header->num_handles_to_copy, false);
rp.Skip(handle_descriptor_header->num_handles_to_move, false);
}
}
for (u32 i = 0; i < command_header->num_buf_x_descriptors; ++i) {
buffer_x_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorX>());
}
for (u32 i = 0; i < command_header->num_buf_a_descriptors; ++i) {
buffer_a_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorABW>());
}
for (u32 i = 0; i < command_header->num_buf_b_descriptors; ++i) {
buffer_b_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorABW>());
}
for (u32 i = 0; i < command_header->num_buf_w_descriptors; ++i) {
buffer_w_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorABW>());
}
const auto buffer_c_offset = rp.GetCurrentOffset() + command_header->data_size;
if (!command_header->IsTipc()) {
// Padding to align to 16 bytes
rp.AlignWithPadding();
if (Session()->IsDomain() &&
((command_header->type == IPC::CommandType::Request ||
command_header->type == IPC::CommandType::RequestWithContext) ||
!incoming)) {
// If this is an incoming message, only CommandType "Request" has a domain header
// All outgoing domain messages have the domain header, if only incoming has it
if (incoming || domain_message_header) {
domain_message_header = rp.PopRaw<IPC::DomainMessageHeader>();
} else {
if (Session()->IsDomain()) {
LOG_WARNING(IPC, "Domain request has no DomainMessageHeader!");
}
}
}
data_payload_header = rp.PopRaw<IPC::DataPayloadHeader>();
data_payload_offset = rp.GetCurrentOffset();
if (domain_message_header &&
domain_message_header->command ==
IPC::DomainMessageHeader::CommandType::CloseVirtualHandle) {
// CloseVirtualHandle command does not have SFC* or any data
return;
}
if (incoming) {
ASSERT(data_payload_header->magic == Common::MakeMagic('S', 'F', 'C', 'I'));
} else {
ASSERT(data_payload_header->magic == Common::MakeMagic('S', 'F', 'C', 'O'));
}
}
rp.SetCurrentOffset(buffer_c_offset);
// For Inline buffers, the response data is written directly to buffer_c_offset
// and in this case we don't have any BufferDescriptorC on the request.
if (command_header->buf_c_descriptor_flags >
IPC::CommandHeader::BufferDescriptorCFlag::InlineDescriptor) {
if (command_header->buf_c_descriptor_flags ==
IPC::CommandHeader::BufferDescriptorCFlag::OneDescriptor) {
buffer_c_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorC>());
} else {
u32 num_buf_c_descriptors =
static_cast<u32>(command_header->buf_c_descriptor_flags.Value()) - 2;
// This is used to detect possible underflows, in case something is broken
// with the two ifs above and the flags value is == 0 || == 1.
ASSERT(num_buf_c_descriptors < 14);
for (u32 i = 0; i < num_buf_c_descriptors; ++i) {
buffer_c_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorC>());
}
}
}
rp.SetCurrentOffset(data_payload_offset);
command = rp.Pop<u32_le>();
rp.Skip(1, false); // The command is actually an u64, but we don't use the high part.
}
ResultCode HLERequestContext::PopulateFromIncomingCommandBuffer(const KHandleTable& handle_table,
u32_le* src_cmdbuf) {
ParseCommandBuffer(handle_table, src_cmdbuf, true);
if (command_header->IsCloseCommand()) {
// Close does not populate the rest of the IPC header
return ResultSuccess;
}
std::copy_n(src_cmdbuf, IPC::COMMAND_BUFFER_LENGTH, cmd_buf.begin());
return ResultSuccess;
}
ResultCode HLERequestContext::WriteToOutgoingCommandBuffer(KThread& requesting_thread) {
auto current_offset = handles_offset;
auto& owner_process = *requesting_thread.GetOwnerProcess();
auto& handle_table = owner_process.GetHandleTable();
for (auto& object : outgoing_copy_objects) {
Handle handle{};
if (object) {
R_TRY(handle_table.Add(&handle, object));
}
cmd_buf[current_offset++] = handle;
}
for (auto& object : outgoing_move_objects) {
Handle handle{};
if (object) {
R_TRY(handle_table.Add(&handle, object));
// Close our reference to the object, as it is being moved to the caller.
object->Close();
}
cmd_buf[current_offset++] = handle;
}
// Write the domain objects to the command buffer, these go after the raw untranslated data.
// TODO(Subv): This completely ignores C buffers.
if (Session()->IsDomain()) {
current_offset = domain_offset - static_cast<u32>(outgoing_domain_objects.size());
for (const auto& object : outgoing_domain_objects) {
server_session->AppendDomainHandler(object);
cmd_buf[current_offset++] =
static_cast<u32_le>(server_session->NumDomainRequestHandlers());
}
}
// Copy the translated command buffer back into the thread's command buffer area.
memory.WriteBlock(owner_process, requesting_thread.GetTLSAddress(), cmd_buf.data(),
write_size * sizeof(u32));
return ResultSuccess;
}
std::vector<u8> HLERequestContext::ReadBuffer(std::size_t buffer_index) const {
std::vector<u8> buffer{};
const bool is_buffer_a{BufferDescriptorA().size() > buffer_index &&
BufferDescriptorA()[buffer_index].Size()};
if (is_buffer_a) {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorA().size() > buffer_index, { return buffer; },
"BufferDescriptorA invalid buffer_index {}", buffer_index);
buffer.resize(BufferDescriptorA()[buffer_index].Size());
memory.ReadBlock(BufferDescriptorA()[buffer_index].Address(), buffer.data(), buffer.size());
} else {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorX().size() > buffer_index, { return buffer; },
"BufferDescriptorX invalid buffer_index {}", buffer_index);
buffer.resize(BufferDescriptorX()[buffer_index].Size());
memory.ReadBlock(BufferDescriptorX()[buffer_index].Address(), buffer.data(), buffer.size());
}
return buffer;
}
std::size_t HLERequestContext::WriteBuffer(const void* buffer, std::size_t size,
std::size_t buffer_index) const {
if (size == 0) {
LOG_WARNING(Core, "skip empty buffer write");
return 0;
}
const bool is_buffer_b{BufferDescriptorB().size() > buffer_index &&
BufferDescriptorB()[buffer_index].Size()};
const std::size_t buffer_size{GetWriteBufferSize(buffer_index)};
if (size > buffer_size) {
LOG_CRITICAL(Core, "size ({:016X}) is greater than buffer_size ({:016X})", size,
buffer_size);
size = buffer_size; // TODO(bunnei): This needs to be HW tested
}
if (is_buffer_b) {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorB().size() > buffer_index &&
BufferDescriptorB()[buffer_index].Size() >= size,
{ return 0; }, "BufferDescriptorB is invalid, index={}, size={}", buffer_index, size);
memory.WriteBlock(BufferDescriptorB()[buffer_index].Address(), buffer, size);
} else {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorC().size() > buffer_index &&
BufferDescriptorC()[buffer_index].Size() >= size,
{ return 0; }, "BufferDescriptorC is invalid, index={}, size={}", buffer_index, size);
memory.WriteBlock(BufferDescriptorC()[buffer_index].Address(), buffer, size);
}
return size;
}
std::size_t HLERequestContext::GetReadBufferSize(std::size_t buffer_index) const {
const bool is_buffer_a{BufferDescriptorA().size() > buffer_index &&
BufferDescriptorA()[buffer_index].Size()};
if (is_buffer_a) {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorA().size() > buffer_index, { return 0; },
"BufferDescriptorA invalid buffer_index {}", buffer_index);
return BufferDescriptorA()[buffer_index].Size();
} else {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorX().size() > buffer_index, { return 0; },
"BufferDescriptorX invalid buffer_index {}", buffer_index);
return BufferDescriptorX()[buffer_index].Size();
}
}
std::size_t HLERequestContext::GetWriteBufferSize(std::size_t buffer_index) const {
const bool is_buffer_b{BufferDescriptorB().size() > buffer_index &&
BufferDescriptorB()[buffer_index].Size()};
if (is_buffer_b) {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorB().size() > buffer_index, { return 0; },
"BufferDescriptorB invalid buffer_index {}", buffer_index);
return BufferDescriptorB()[buffer_index].Size();
} else {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorC().size() > buffer_index, { return 0; },
"BufferDescriptorC invalid buffer_index {}", buffer_index);
return BufferDescriptorC()[buffer_index].Size();
}
return 0;
}
bool HLERequestContext::CanReadBuffer(std::size_t buffer_index) const {
const bool is_buffer_a{BufferDescriptorA().size() > buffer_index &&
BufferDescriptorA()[buffer_index].Size()};
if (is_buffer_a) {
return BufferDescriptorA().size() > buffer_index;
} else {
return BufferDescriptorX().size() > buffer_index;
}
}
bool HLERequestContext::CanWriteBuffer(std::size_t buffer_index) const {
const bool is_buffer_b{BufferDescriptorB().size() > buffer_index &&
BufferDescriptorB()[buffer_index].Size()};
if (is_buffer_b) {
return BufferDescriptorB().size() > buffer_index;
} else {
return BufferDescriptorC().size() > buffer_index;
}
}
std::string HLERequestContext::Description() const {
if (!command_header) {
return "No command header available";
}
std::ostringstream s;
s << "IPC::CommandHeader: Type:" << static_cast<u32>(command_header->type.Value());
s << ", X(Pointer):" << command_header->num_buf_x_descriptors;
if (command_header->num_buf_x_descriptors) {
s << '[';
for (u64 i = 0; i < command_header->num_buf_x_descriptors; ++i) {
s << "0x" << std::hex << BufferDescriptorX()[i].Size();
if (i < command_header->num_buf_x_descriptors - 1)
s << ", ";
}
s << ']';
}
s << ", A(Send):" << command_header->num_buf_a_descriptors;
if (command_header->num_buf_a_descriptors) {
s << '[';
for (u64 i = 0; i < command_header->num_buf_a_descriptors; ++i) {
s << "0x" << std::hex << BufferDescriptorA()[i].Size();
if (i < command_header->num_buf_a_descriptors - 1)
s << ", ";
}
s << ']';
}
s << ", B(Receive):" << command_header->num_buf_b_descriptors;
if (command_header->num_buf_b_descriptors) {
s << '[';
for (u64 i = 0; i < command_header->num_buf_b_descriptors; ++i) {
s << "0x" << std::hex << BufferDescriptorB()[i].Size();
if (i < command_header->num_buf_b_descriptors - 1)
s << ", ";
}
s << ']';
}
s << ", C(ReceiveList):" << BufferDescriptorC().size();
if (!BufferDescriptorC().empty()) {
s << '[';
for (u64 i = 0; i < BufferDescriptorC().size(); ++i) {
s << "0x" << std::hex << BufferDescriptorC()[i].Size();
if (i < BufferDescriptorC().size() - 1)
s << ", ";
}
s << ']';
}
s << ", data_size:" << command_header->data_size.Value();
return s.str();
}
} // namespace Kernel