yuzu/src/video_core/memory_manager.h

228 lines
8.0 KiB
C++
Raw Normal View History

// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <atomic>
#include <map>
#include <optional>
#include <vector>
#include "common/common_types.h"
2021-11-11 12:24:40 -08:00
#include "common/multi_level_page_table.h"
#include "common/range_map.h"
#include "common/virtual_buffer.h"
#include "video_core/cache_types.h"
#include "video_core/pte_kind.h"
namespace VideoCore {
class RasterizerInterface;
}
2023-01-04 19:05:20 -08:00
namespace VideoCommon {
class InvalidationAccumulator;
}
namespace Core {
class DeviceMemory;
namespace Memory {
class Memory;
} // namespace Memory
class System;
} // namespace Core
namespace Tegra {
class MemoryManager final {
public:
2021-11-11 12:24:40 -08:00
explicit MemoryManager(Core::System& system_, u64 address_space_bits_ = 40,
u64 big_page_bits_ = 16, u64 page_bits_ = 12);
~MemoryManager();
size_t GetID() const {
return unique_identifier;
}
/// Binds a renderer to the memory manager.
void BindRasterizer(VideoCore::RasterizerInterface* rasterizer);
[[nodiscard]] std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr) const;
[[nodiscard]] std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr, std::size_t size) const;
template <typename T>
[[nodiscard]] T Read(GPUVAddr addr) const;
template <typename T>
void Write(GPUVAddr addr, T data);
[[nodiscard]] u8* GetPointer(GPUVAddr addr);
[[nodiscard]] const u8* GetPointer(GPUVAddr addr) const;
/**
* ReadBlock and WriteBlock are full read and write operations over virtual
* GPU Memory. It's important to use these when GPU memory may not be continuous
* in the Host Memory counterpart. Note: This functions cause Host GPU Memory
* Flushes and Invalidations, respectively to each operation.
*/
void ReadBlock(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size,
VideoCommon::CacheType which = VideoCommon::CacheType::All) const;
void WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size,
VideoCommon::CacheType which = VideoCommon::CacheType::All);
void CopyBlock(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size,
VideoCommon::CacheType which = VideoCommon::CacheType::All);
/**
* ReadBlockUnsafe and WriteBlockUnsafe are special versions of ReadBlock and
* WriteBlock respectively. In this versions, no flushing or invalidation is actually
* done and their performance is similar to a memcpy. This functions can be used
* on either of this 2 scenarios instead of their safe counterpart:
* - Memory which is sure to never be represented in the Host GPU.
* - Memory Managed by a Cache Manager. Example: Texture Flushing should use
* WriteBlockUnsafe instead of WriteBlock since it shouldn't invalidate the texture
* being flushed.
*/
void ReadBlockUnsafe(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size) const;
void WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size);
2023-01-04 19:05:20 -08:00
void WriteBlockCached(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size);
2020-04-08 10:34:59 -07:00
/**
2021-06-20 03:25:59 -07:00
* Checks if a gpu region can be simply read with a pointer.
2020-04-08 10:34:59 -07:00
*/
[[nodiscard]] bool IsGranularRange(GPUVAddr gpu_addr, std::size_t size) const;
/**
2021-06-20 03:25:59 -07:00
* Checks if a gpu region is mapped by a single range of cpu addresses.
*/
[[nodiscard]] bool IsContinousRange(GPUVAddr gpu_addr, std::size_t size) const;
/**
2021-06-20 03:25:59 -07:00
* Checks if a gpu region is mapped entirely.
*/
[[nodiscard]] bool IsFullyMappedRange(GPUVAddr gpu_addr, std::size_t size) const;
/**
2021-06-20 03:25:59 -07:00
* Returns a vector with all the subranges of cpu addresses mapped beneath.
* if the region is continous, a single pair will be returned. If it's unmapped, an empty vector
* will be returned;
*/
std::vector<std::pair<GPUVAddr, std::size_t>> GetSubmappedRange(GPUVAddr gpu_addr,
2023-01-05 03:43:54 -08:00
std::size_t size) const;
GPUVAddr Map(GPUVAddr gpu_addr, VAddr cpu_addr, std::size_t size,
PTEKind kind = PTEKind::INVALID, bool is_big_pages = true);
GPUVAddr MapSparse(GPUVAddr gpu_addr, std::size_t size, bool is_big_pages = true);
void Unmap(GPUVAddr gpu_addr, std::size_t size);
void FlushRegion(GPUVAddr gpu_addr, size_t size,
VideoCommon::CacheType which = VideoCommon::CacheType::All) const;
void InvalidateRegion(GPUVAddr gpu_addr, size_t size,
VideoCommon::CacheType which = VideoCommon::CacheType::All) const;
2022-08-14 02:36:36 -07:00
bool IsMemoryDirty(GPUVAddr gpu_addr, size_t size,
VideoCommon::CacheType which = VideoCommon::CacheType::All) const;
2022-08-14 02:36:36 -07:00
size_t MaxContinousRange(GPUVAddr gpu_addr, size_t size) const;
bool IsWithinGPUAddressRange(GPUVAddr gpu_addr) const {
return gpu_addr < address_space_size;
}
PTEKind GetPageKind(GPUVAddr gpu_addr) const;
size_t GetMemoryLayoutSize(GPUVAddr gpu_addr,
size_t max_size = std::numeric_limits<size_t>::max()) const;
2023-01-04 19:05:20 -08:00
void FlushCaching();
private:
template <bool is_big_pages, typename FuncMapped, typename FuncReserved, typename FuncUnmapped>
inline void MemoryOperation(GPUVAddr gpu_src_addr, std::size_t size, FuncMapped&& func_mapped,
FuncReserved&& func_reserved, FuncUnmapped&& func_unmapped) const;
template <bool is_safe>
void ReadBlockImpl(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size,
VideoCommon::CacheType which) const;
template <bool is_safe>
void WriteBlockImpl(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size,
VideoCommon::CacheType which);
template <bool is_big_page>
2022-08-31 20:45:22 -07:00
[[nodiscard]] std::size_t PageEntryIndex(GPUVAddr gpu_addr) const {
if constexpr (is_big_page) {
return (gpu_addr >> big_page_bits) & big_page_table_mask;
} else {
return (gpu_addr >> page_bits) & page_table_mask;
}
}
inline bool IsBigPageContinous(size_t big_page_index) const;
inline void SetBigPageContinous(size_t big_page_index, bool value);
2023-01-04 19:05:20 -08:00
template <bool is_gpu_address>
void GetSubmappedRangeImpl(
GPUVAddr gpu_addr, std::size_t size,
std::vector<std::pair<std::conditional_t<is_gpu_address, GPUVAddr, VAddr>, std::size_t>>&
result) const;
Core::System& system;
Core::Memory::Memory& memory;
Core::DeviceMemory& device_memory;
2021-11-11 12:24:40 -08:00
const u64 address_space_bits;
const u64 page_bits;
u64 address_space_size;
u64 page_size;
u64 page_mask;
u64 page_table_mask;
static constexpr u64 cpu_page_bits{12};
const u64 big_page_bits;
u64 big_page_size;
u64 big_page_mask;
u64 big_page_table_mask;
VideoCore::RasterizerInterface* rasterizer = nullptr;
2021-11-11 12:24:40 -08:00
enum class EntryType : u64 {
Free = 0,
Reserved = 1,
Mapped = 2,
};
std::vector<u64> entries;
std::vector<u64> big_entries;
2021-11-11 12:24:40 -08:00
template <EntryType entry_type>
GPUVAddr PageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cpu_addr, size_t size,
PTEKind kind);
2021-11-11 12:24:40 -08:00
template <EntryType entry_type>
GPUVAddr BigPageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cpu_addr, size_t size,
PTEKind kind);
template <bool is_big_page>
inline EntryType GetEntry(size_t position) const;
template <bool is_big_page>
inline void SetEntry(size_t position, EntryType entry);
2021-11-11 12:24:40 -08:00
Common::MultiLevelPageTable<u32> page_table;
Common::RangeMap<GPUVAddr, PTEKind> kind_map;
Common::VirtualBuffer<u32> big_page_table_cpu;
std::vector<u64> big_page_continous;
2023-01-04 19:05:20 -08:00
std::vector<std::pair<VAddr, std::size_t>> page_stash{};
constexpr static size_t continous_bits = 64;
const size_t unique_identifier;
2023-01-04 19:05:20 -08:00
std::unique_ptr<VideoCommon::InvalidationAccumulator> accumulator;
static std::atomic<size_t> unique_identifier_generator;
};
} // namespace Tegra