yuzu/src/video_core/shader/async_shaders.cpp

222 lines
7.7 KiB
C++
Raw Normal View History

2020-07-09 20:36:38 -07:00
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
2020-07-17 21:24:32 -07:00
#include <condition_variable>
#include <mutex>
#include <thread>
#include <vector>
2020-07-09 20:36:38 -07:00
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_base.h"
#include "video_core/renderer_opengl/gl_shader_cache.h"
#include "video_core/shader/async_shaders.h"
namespace VideoCommon::Shader {
2020-07-17 21:24:32 -07:00
2020-07-09 20:36:38 -07:00
AsyncShaders::AsyncShaders(Core::Frontend::EmuWindow& emu_window) : emu_window(emu_window) {}
2020-07-17 21:24:32 -07:00
2020-07-09 20:36:38 -07:00
AsyncShaders::~AsyncShaders() {
KillWorkers();
}
void AsyncShaders::AllocateWorkers() {
// Max worker threads we should allow
constexpr u32 MAX_THREADS = 4;
// Deduce how many threads we can use
const u32 threads_used = std::thread::hardware_concurrency() / 4;
// Always allow at least 1 thread regardless of our settings
const auto max_worker_count = std::max(1U, threads_used);
// Don't use more than MAX_THREADS
const auto num_workers = std::min(max_worker_count, MAX_THREADS);
// If we already have workers queued, ignore
if (num_workers == worker_threads.size()) {
2020-07-09 20:36:38 -07:00
return;
}
// If workers already exist, clear them
if (!worker_threads.empty()) {
FreeWorkers();
}
// Create workers
for (std::size_t i = 0; i < num_workers; i++) {
context_list.push_back(emu_window.CreateSharedContext());
worker_threads.push_back(
std::thread(&AsyncShaders::ShaderCompilerThread, this, context_list[i].get()));
2020-07-09 20:36:38 -07:00
}
}
void AsyncShaders::FreeWorkers() {
// Mark all threads to quit
is_thread_exiting.store(true);
2020-07-16 01:51:32 -07:00
cv.notify_all();
2020-07-09 20:36:38 -07:00
for (auto& thread : worker_threads) {
thread.join();
}
// Clear our shared contexts
context_list.clear();
// Clear our worker threads
worker_threads.clear();
}
void AsyncShaders::KillWorkers() {
is_thread_exiting.store(true);
for (auto& thread : worker_threads) {
thread.detach();
}
// Clear our shared contexts
context_list.clear();
// Clear our worker threads
worker_threads.clear();
}
bool AsyncShaders::HasWorkQueued() {
return !pending_queue.empty();
}
bool AsyncShaders::HasCompletedWork() {
2020-07-17 21:24:32 -07:00
std::shared_lock lock{completed_mutex};
2020-07-09 20:36:38 -07:00
return !finished_work.empty();
}
bool AsyncShaders::IsShaderAsync(const Tegra::GPU& gpu) const {
const auto& regs = gpu.Maxwell3D().regs;
// If something is using depth, we can assume that games are not rendering anything which will
// be used one time.
if (regs.zeta_enable) {
return true;
}
// If games are using a small index count, we can assume these are full screen quads. Usually
// these shaders are only used once for building textures so we can assume they can't be built
// async
if (regs.index_array.count <= 6 || regs.vertex_buffer.count <= 6) {
return false;
}
return true;
}
std::vector<AsyncShaders::Result> AsyncShaders::GetCompletedWork() {
std::vector<AsyncShaders::Result> results;
{
2020-07-17 21:24:32 -07:00
std::unique_lock lock{completed_mutex};
2020-07-09 20:36:38 -07:00
results.assign(std::make_move_iterator(finished_work.begin()),
std::make_move_iterator(finished_work.end()));
finished_work.clear();
}
return results;
}
void AsyncShaders::QueueOpenGLShader(const OpenGL::Device& device,
Tegra::Engines::ShaderType shader_type, u64 uid,
std::vector<u64> code, std::vector<u64> code_b,
u32 main_offset,
VideoCommon::Shader::CompilerSettings compiler_settings,
const VideoCommon::Shader::Registry& registry,
VAddr cpu_addr) {
WorkerParams params{
.backend = device.UseAssemblyShaders() ? Backend::GLASM : Backend::OpenGL,
.device = &device,
.shader_type = shader_type,
.uid = uid,
.code = std::move(code),
.code_b = std::move(code_b),
.main_offset = main_offset,
.compiler_settings = compiler_settings,
.registry = registry,
.cpu_address = cpu_addr,
};
2020-07-09 20:36:38 -07:00
std::unique_lock lock(queue_mutex);
pending_queue.push(std::move(params));
2020-07-27 21:08:02 -07:00
cv.notify_one();
}
void AsyncShaders::QueueVulkanShader(Vulkan::VKPipelineCache* pp_cache,
const Vulkan::VKDevice& device, Vulkan::VKScheduler& scheduler,
Vulkan::VKDescriptorPool& descriptor_pool,
Vulkan::VKUpdateDescriptorQueue& update_descriptor_queue,
Vulkan::VKRenderPassCache& renderpass_cache,
std::vector<VkDescriptorSetLayoutBinding> bindings,
Vulkan::SPIRVProgram program,
Vulkan::GraphicsPipelineCacheKey key) {
WorkerParams params{
.backend = Backend::Vulkan,
.pp_cache = pp_cache,
.vk_device = &device,
.scheduler = &scheduler,
.descriptor_pool = &descriptor_pool,
.update_descriptor_queue = &update_descriptor_queue,
.renderpass_cache = &renderpass_cache,
.bindings = bindings,
.program = program,
.key = key,
};
2020-07-27 21:08:02 -07:00
2020-07-09 20:36:38 -07:00
std::unique_lock lock(queue_mutex);
pending_queue.push(std::move(params));
2020-07-16 01:38:35 -07:00
cv.notify_one();
2020-07-09 20:36:38 -07:00
}
void AsyncShaders::ShaderCompilerThread(Core::Frontend::GraphicsContext* context) {
while (!is_thread_exiting.load(std::memory_order_relaxed)) {
2020-07-17 21:24:32 -07:00
std::unique_lock lock{queue_mutex};
cv.wait(lock, [this] { return HasWorkQueued() || is_thread_exiting; });
2020-07-16 01:38:35 -07:00
if (is_thread_exiting) {
return;
}
2020-07-09 20:36:38 -07:00
// Partial lock to allow all threads to read at the same time
if (!HasWorkQueued()) {
continue;
}
// Another thread beat us, just unlock and wait for the next load
if (pending_queue.empty()) {
continue;
}
2020-07-16 01:38:35 -07:00
2020-07-09 20:36:38 -07:00
// Pull work from queue
WorkerParams work = std::move(pending_queue.front());
pending_queue.pop();
2020-07-16 01:38:35 -07:00
lock.unlock();
2020-07-09 20:36:38 -07:00
if (work.backend == Backend::OpenGL || work.backend == Backend::GLASM) {
const ShaderIR ir(work.code, work.main_offset, work.compiler_settings, *work.registry);
2020-07-09 20:36:38 -07:00
const auto scope = context->Acquire();
auto program =
OpenGL::BuildShader(*work.device, work.shader_type, work.uid, ir, *work.registry);
2020-07-09 20:36:38 -07:00
Result result{};
result.backend = work.backend;
result.cpu_address = work.cpu_address;
result.uid = work.uid;
result.code = std::move(work.code);
result.code_b = std::move(work.code_b);
result.shader_type = work.shader_type;
if (work.backend == Backend::OpenGL) {
2020-07-09 20:36:38 -07:00
result.program.opengl = std::move(program->source_program);
} else if (work.backend == Backend::GLASM) {
2020-07-09 20:36:38 -07:00
result.program.glasm = std::move(program->assembly_program);
}
{
std::unique_lock complete_lock(completed_mutex);
finished_work.push_back(std::move(result));
}
} else if (work.backend == Backend::Vulkan) {
auto pipeline = std::make_unique<Vulkan::VKGraphicsPipeline>(
*work.vk_device, *work.scheduler, *work.descriptor_pool,
*work.update_descriptor_queue, *work.renderpass_cache, work.key, work.bindings,
work.program);
2020-07-27 21:08:02 -07:00
work.pp_cache->EmplacePipeline(std::move(pipeline));
2020-07-09 20:36:38 -07:00
}
}
}
} // namespace VideoCommon::Shader