yuzu/src/core/hid/input_converter.cpp

441 lines
13 KiB
C++
Raw Normal View History

// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm>
#include <random>
#include "common/input.h"
#include "core/hid/input_converter.h"
namespace Core::HID {
Common::Input::BatteryStatus TransformToBattery(const Common::Input::CallbackStatus& callback) {
Common::Input::BatteryStatus battery{Common::Input::BatteryStatus::None};
switch (callback.type) {
case Common::Input::InputType::Analog:
case Common::Input::InputType::Trigger: {
const auto value = TransformToTrigger(callback).analog.value;
battery = Common::Input::BatteryLevel::Empty;
if (value > 0.2f) {
battery = Common::Input::BatteryLevel::Critical;
}
if (value > 0.4f) {
battery = Common::Input::BatteryLevel::Low;
}
if (value > 0.6f) {
battery = Common::Input::BatteryLevel::Medium;
}
if (value > 0.8f) {
battery = Common::Input::BatteryLevel::Full;
}
2022-02-02 10:22:22 -08:00
if (value >= 0.95f) {
battery = Common::Input::BatteryLevel::Charging;
}
break;
}
case Common::Input::InputType::Button:
battery = callback.button_status.value ? Common::Input::BatteryLevel::Charging
: Common::Input::BatteryLevel::Critical;
2021-10-24 21:23:54 -07:00
break;
case Common::Input::InputType::Battery:
battery = callback.battery_status;
break;
default:
LOG_ERROR(Input, "Conversion from type {} to battery not implemented", callback.type);
break;
}
return battery;
}
Common::Input::ButtonStatus TransformToButton(const Common::Input::CallbackStatus& callback) {
Common::Input::ButtonStatus status{};
switch (callback.type) {
case Common::Input::InputType::Analog:
status.value = TransformToTrigger(callback).pressed.value;
status.toggle = callback.analog_status.properties.toggle;
status.inverted = callback.analog_status.properties.inverted_button;
break;
case Common::Input::InputType::Trigger:
status.value = TransformToTrigger(callback).pressed.value;
break;
case Common::Input::InputType::Button:
status = callback.button_status;
break;
case Common::Input::InputType::Motion:
status.value = std::abs(callback.motion_status.gyro.x.raw_value) > 1.0f;
break;
default:
LOG_ERROR(Input, "Conversion from type {} to button not implemented", callback.type);
break;
}
if (status.inverted) {
status.value = !status.value;
}
return status;
}
Common::Input::MotionStatus TransformToMotion(const Common::Input::CallbackStatus& callback) {
Common::Input::MotionStatus status{};
switch (callback.type) {
case Common::Input::InputType::Button: {
Common::Input::AnalogProperties properties{
.deadzone = 0.0f,
.range = 1.0f,
.offset = 0.0f,
};
status.delta_timestamp = 1000;
status.force_update = true;
status.accel.x = {
.value = 0.0f,
.raw_value = 0.0f,
.properties = properties,
};
status.accel.y = {
.value = 0.0f,
.raw_value = 0.0f,
.properties = properties,
};
status.accel.z = {
.value = 0.0f,
.raw_value = -1.0f,
.properties = properties,
};
status.gyro.x = {
.value = 0.0f,
.raw_value = 0.0f,
.properties = properties,
};
status.gyro.y = {
.value = 0.0f,
.raw_value = 0.0f,
.properties = properties,
};
status.gyro.z = {
.value = 0.0f,
.raw_value = 0.0f,
.properties = properties,
};
if (TransformToButton(callback).value) {
std::random_device device;
std::mt19937 gen(device());
std::uniform_int_distribution<s16> distribution(-5000, 5000);
status.accel.x.raw_value = static_cast<f32>(distribution(gen)) * 0.001f;
status.accel.y.raw_value = static_cast<f32>(distribution(gen)) * 0.001f;
status.accel.z.raw_value = static_cast<f32>(distribution(gen)) * 0.001f;
status.gyro.x.raw_value = static_cast<f32>(distribution(gen)) * 0.001f;
status.gyro.y.raw_value = static_cast<f32>(distribution(gen)) * 0.001f;
status.gyro.z.raw_value = static_cast<f32>(distribution(gen)) * 0.001f;
}
break;
}
case Common::Input::InputType::Motion:
status = callback.motion_status;
break;
default:
LOG_ERROR(Input, "Conversion from type {} to motion not implemented", callback.type);
break;
}
SanitizeAnalog(status.accel.x, false);
SanitizeAnalog(status.accel.y, false);
SanitizeAnalog(status.accel.z, false);
SanitizeAnalog(status.gyro.x, false);
SanitizeAnalog(status.gyro.y, false);
SanitizeAnalog(status.gyro.z, false);
return status;
}
Common::Input::StickStatus TransformToStick(const Common::Input::CallbackStatus& callback) {
Common::Input::StickStatus status{};
switch (callback.type) {
case Common::Input::InputType::Stick:
status = callback.stick_status;
break;
default:
LOG_ERROR(Input, "Conversion from type {} to stick not implemented", callback.type);
break;
}
SanitizeStick(status.x, status.y, true);
2021-10-22 21:04:06 -07:00
const auto& properties_x = status.x.properties;
const auto& properties_y = status.y.properties;
const float x = status.x.value;
const float y = status.y.value;
// Set directional buttons
status.right = x > properties_x.threshold;
status.left = x < -properties_x.threshold;
status.up = y > properties_y.threshold;
status.down = y < -properties_y.threshold;
return status;
}
Common::Input::TouchStatus TransformToTouch(const Common::Input::CallbackStatus& callback) {
Common::Input::TouchStatus status{};
switch (callback.type) {
case Common::Input::InputType::Touch:
status = callback.touch_status;
break;
case Common::Input::InputType::Stick:
status.x = callback.stick_status.x;
status.y = callback.stick_status.y;
break;
default:
LOG_ERROR(Input, "Conversion from type {} to touch not implemented", callback.type);
break;
}
SanitizeAnalog(status.x, true);
SanitizeAnalog(status.y, true);
float& x = status.x.value;
float& y = status.y.value;
// Adjust if value is inverted
x = status.x.properties.inverted ? 1.0f + x : x;
y = status.y.properties.inverted ? 1.0f + y : y;
// clamp value
x = std::clamp(x, 0.0f, 1.0f);
y = std::clamp(y, 0.0f, 1.0f);
if (status.pressed.inverted) {
status.pressed.value = !status.pressed.value;
}
return status;
}
Common::Input::TriggerStatus TransformToTrigger(const Common::Input::CallbackStatus& callback) {
Common::Input::TriggerStatus status{};
float& raw_value = status.analog.raw_value;
bool calculate_button_value = true;
switch (callback.type) {
case Common::Input::InputType::Analog:
status.analog.properties = callback.analog_status.properties;
raw_value = callback.analog_status.raw_value;
break;
case Common::Input::InputType::Button:
status.analog.properties.range = 1.0f;
status.analog.properties.inverted = callback.button_status.inverted;
raw_value = callback.button_status.value ? 1.0f : 0.0f;
break;
case Common::Input::InputType::Trigger:
status = callback.trigger_status;
calculate_button_value = false;
break;
case Common::Input::InputType::Motion:
status.analog.properties.range = 1.0f;
raw_value = callback.motion_status.accel.x.raw_value;
break;
default:
LOG_ERROR(Input, "Conversion from type {} to trigger not implemented", callback.type);
break;
}
SanitizeAnalog(status.analog, true);
2021-10-22 21:04:06 -07:00
const auto& properties = status.analog.properties;
float& value = status.analog.value;
// Set button status
if (calculate_button_value) {
status.pressed.value = value > properties.threshold;
}
// Adjust if value is inverted
value = properties.inverted ? 1.0f + value : value;
// clamp value
value = std::clamp(value, 0.0f, 1.0f);
2021-11-14 12:09:29 -08:00
return status;
}
Common::Input::AnalogStatus TransformToAnalog(const Common::Input::CallbackStatus& callback) {
Common::Input::AnalogStatus status{};
switch (callback.type) {
case Common::Input::InputType::Analog:
status.properties = callback.analog_status.properties;
status.raw_value = callback.analog_status.raw_value;
break;
default:
LOG_ERROR(Input, "Conversion from type {} to analog not implemented", callback.type);
break;
}
SanitizeAnalog(status, false);
// Adjust if value is inverted
status.value = status.properties.inverted ? -status.value : status.value;
return status;
}
2022-06-18 21:36:29 -07:00
Common::Input::CameraStatus TransformToCamera(const Common::Input::CallbackStatus& callback) {
Common::Input::CameraStatus camera{};
switch (callback.type) {
case Common::Input::InputType::IrSensor:
camera = {
.format = callback.camera_status,
.data = callback.raw_data,
};
2022-06-18 21:36:29 -07:00
break;
default:
LOG_ERROR(Input, "Conversion from type {} to camera not implemented", callback.type);
break;
}
return camera;
}
Common::Input::NfcStatus TransformToNfc(const Common::Input::CallbackStatus& callback) {
Common::Input::NfcStatus nfc{};
switch (callback.type) {
case Common::Input::InputType::Nfc:
nfc = {
.state = callback.nfc_status,
.data = callback.raw_data,
};
break;
default:
LOG_ERROR(Input, "Conversion from type {} to NFC not implemented", callback.type);
break;
}
return nfc;
}
Common::Input::BodyColorStatus TransformToColor(const Common::Input::CallbackStatus& callback) {
switch (callback.type) {
case Common::Input::InputType::Color:
2022-12-23 06:32:02 -08:00
return callback.color_status;
break;
default:
LOG_ERROR(Input, "Conversion from type {} to color not implemented", callback.type);
2022-12-23 06:32:02 -08:00
return {};
break;
}
}
void SanitizeAnalog(Common::Input::AnalogStatus& analog, bool clamp_value) {
2021-10-22 21:04:06 -07:00
const auto& properties = analog.properties;
float& raw_value = analog.raw_value;
float& value = analog.value;
if (!std::isnormal(raw_value)) {
raw_value = 0;
}
// Apply center offset
raw_value -= properties.offset;
2023-03-11 19:10:38 -08:00
// Set initial values to be formatted
value = raw_value;
// Calculate vector size
const float r = std::abs(value);
// Return zero if value is smaller than the deadzone
if (r <= properties.deadzone || properties.deadzone == 1.0f) {
analog.value = 0;
return;
}
// Adjust range of value
const float deadzone_factor =
1.0f / r * (r - properties.deadzone) / (1.0f - properties.deadzone);
value = value * deadzone_factor / properties.range;
// Invert direction if needed
if (properties.inverted) {
value = -value;
}
// Clamp value
if (clamp_value) {
value = std::clamp(value, -1.0f, 1.0f);
}
}
void SanitizeStick(Common::Input::AnalogStatus& analog_x, Common::Input::AnalogStatus& analog_y,
bool clamp_value) {
2021-10-22 21:04:06 -07:00
const auto& properties_x = analog_x.properties;
const auto& properties_y = analog_y.properties;
float& raw_x = analog_x.raw_value;
float& raw_y = analog_y.raw_value;
float& x = analog_x.value;
float& y = analog_y.value;
if (!std::isnormal(raw_x)) {
raw_x = 0;
}
if (!std::isnormal(raw_y)) {
raw_y = 0;
}
// Apply center offset
raw_x += properties_x.offset;
raw_y += properties_y.offset;
// Apply X scale correction from offset
if (std::abs(properties_x.offset) < 0.75f) {
if (raw_x > 0) {
raw_x /= 1 + properties_x.offset;
} else {
raw_x /= 1 - properties_x.offset;
}
}
// Apply Y scale correction from offset
if (std::abs(properties_y.offset) < 0.75f) {
if (raw_y > 0) {
raw_y /= 1 + properties_y.offset;
} else {
raw_y /= 1 - properties_y.offset;
}
}
// Invert direction if needed
raw_x = properties_x.inverted ? -raw_x : raw_x;
raw_y = properties_y.inverted ? -raw_y : raw_y;
2023-03-11 19:10:38 -08:00
// Set initial values to be formatted
x = raw_x;
y = raw_y;
// Calculate vector size
float r = x * x + y * y;
r = std::sqrt(r);
// TODO(German77): Use deadzone and range of both axis
// Return zero if values are smaller than the deadzone
if (r <= properties_x.deadzone || properties_x.deadzone >= 1.0f) {
x = 0;
y = 0;
return;
}
// Adjust range of joystick
const float deadzone_factor =
1.0f / r * (r - properties_x.deadzone) / (1.0f - properties_x.deadzone);
x = x * deadzone_factor / properties_x.range;
y = y * deadzone_factor / properties_x.range;
r = r * deadzone_factor / properties_x.range;
// Normalize joystick
if (clamp_value && r > 1.0f) {
x /= r;
y /= r;
}
}
} // namespace Core::HID