yuzu/src/core/hle/kernel/k_scheduler.cpp

826 lines
33 KiB
C++
Raw Normal View History

// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
// This file references various implementation details from Atmosphere, an open-source firmware for
// the Nintendo Switch. Copyright 2018-2020 Atmosphere-NX.
#include <bit>
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/fiber.h"
#include "common/logging/log.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/cpu_manager.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/time_manager.h"
namespace Kernel {
static void IncrementScheduledCount(Kernel::KThread* thread) {
if (auto process = thread->GetOwnerProcess(); process) {
process->IncrementScheduledCount();
}
}
void KScheduler::RescheduleCores(KernelCore& kernel, u64 cores_pending_reschedule) {
auto scheduler = kernel.CurrentScheduler();
u32 current_core{0xF};
bool must_context_switch{};
if (scheduler) {
current_core = scheduler->core_id;
// TODO(bunnei): Should be set to true when we deprecate single core
must_context_switch = !kernel.IsPhantomModeForSingleCore();
}
while (cores_pending_reschedule != 0) {
const auto core = static_cast<u32>(std::countr_zero(cores_pending_reschedule));
ASSERT(core < Core::Hardware::NUM_CPU_CORES);
if (!must_context_switch || core != current_core) {
auto& phys_core = kernel.PhysicalCore(core);
phys_core.Interrupt();
} else {
must_context_switch = true;
}
cores_pending_reschedule &= ~(1ULL << core);
}
if (must_context_switch) {
auto core_scheduler = kernel.CurrentScheduler();
kernel.ExitSVCProfile();
core_scheduler->RescheduleCurrentCore();
kernel.EnterSVCProfile();
}
}
u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) {
KScopedSpinLock lk{guard};
if (KThread* prev_highest_thread = state.highest_priority_thread;
prev_highest_thread != highest_thread) {
if (prev_highest_thread != nullptr) {
IncrementScheduledCount(prev_highest_thread);
prev_highest_thread->SetLastScheduledTick(system.CoreTiming().GetCPUTicks());
}
if (state.should_count_idle) {
if (highest_thread != nullptr) {
if (KProcess* process = highest_thread->GetOwnerProcess(); process != nullptr) {
process->SetRunningThread(core_id, highest_thread, state.idle_count);
}
} else {
state.idle_count++;
}
}
state.highest_priority_thread = highest_thread;
state.needs_scheduling.store(true);
return (1ULL << core_id);
} else {
return 0;
}
}
u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Clear that we need to update.
ClearSchedulerUpdateNeeded(kernel);
u64 cores_needing_scheduling = 0, idle_cores = 0;
KThread* top_threads[Core::Hardware::NUM_CPU_CORES];
auto& priority_queue = GetPriorityQueue(kernel);
/// We want to go over all cores, finding the highest priority thread and determining if
/// scheduling is needed for that core.
for (size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
KThread* top_thread = priority_queue.GetScheduledFront(static_cast<s32>(core_id));
if (top_thread != nullptr) {
// If the thread has no waiters, we need to check if the process has a thread pinned.
if (top_thread->GetNumKernelWaiters() == 0) {
if (KProcess* parent = top_thread->GetOwnerProcess(); parent != nullptr) {
if (KThread* pinned = parent->GetPinnedThread(static_cast<s32>(core_id));
pinned != nullptr && pinned != top_thread) {
// We prefer our parent's pinned thread if possible. However, we also don't
// want to schedule un-runnable threads.
if (pinned->GetRawState() == ThreadState::Runnable) {
top_thread = pinned;
} else {
top_thread = nullptr;
}
}
}
}
} else {
idle_cores |= (1ULL << core_id);
}
top_threads[core_id] = top_thread;
cores_needing_scheduling |=
kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]);
}
// Idle cores are bad. We're going to try to migrate threads to each idle core in turn.
while (idle_cores != 0) {
const auto core_id = static_cast<u32>(std::countr_zero(idle_cores));
if (KThread* suggested = priority_queue.GetSuggestedFront(core_id); suggested != nullptr) {
s32 migration_candidates[Core::Hardware::NUM_CPU_CORES];
size_t num_candidates = 0;
// While we have a suggested thread, try to migrate it!
while (suggested != nullptr) {
// Check if the suggested thread is the top thread on its core.
const s32 suggested_core = suggested->GetActiveCore();
if (KThread* top_thread =
(suggested_core >= 0) ? top_threads[suggested_core] : nullptr;
top_thread != suggested) {
// Make sure we're not dealing with threads too high priority for migration.
if (top_thread != nullptr &&
top_thread->GetPriority() < HighestCoreMigrationAllowedPriority) {
break;
}
// The suggested thread isn't bound to its core, so we can migrate it!
suggested->SetActiveCore(core_id);
priority_queue.ChangeCore(suggested_core, suggested);
top_threads[core_id] = suggested;
cores_needing_scheduling |=
kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]);
break;
}
// Note this core as a candidate for migration.
ASSERT(num_candidates < Core::Hardware::NUM_CPU_CORES);
migration_candidates[num_candidates++] = suggested_core;
suggested = priority_queue.GetSuggestedNext(core_id, suggested);
}
// If suggested is nullptr, we failed to migrate a specific thread. So let's try all our
// candidate cores' top threads.
if (suggested == nullptr) {
for (size_t i = 0; i < num_candidates; i++) {
// Check if there's some other thread that can run on the candidate core.
const s32 candidate_core = migration_candidates[i];
suggested = top_threads[candidate_core];
if (KThread* next_on_candidate_core =
priority_queue.GetScheduledNext(candidate_core, suggested);
next_on_candidate_core != nullptr) {
// The candidate core can run some other thread! We'll migrate its current
// top thread to us.
top_threads[candidate_core] = next_on_candidate_core;
cores_needing_scheduling |=
kernel.Scheduler(candidate_core)
.UpdateHighestPriorityThread(top_threads[candidate_core]);
// Perform the migration.
suggested->SetActiveCore(core_id);
priority_queue.ChangeCore(candidate_core, suggested);
top_threads[core_id] = suggested;
cores_needing_scheduling |=
kernel.Scheduler(core_id).UpdateHighestPriorityThread(
top_threads[core_id]);
break;
}
}
}
}
idle_cores &= ~(1ULL << core_id);
}
return cores_needing_scheduling;
}
void KScheduler::ClearPreviousThread(KernelCore& kernel, KThread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; ++i) {
// Get an atomic reference to the core scheduler's previous thread.
std::atomic_ref<KThread*> prev_thread(kernel.Scheduler(static_cast<s32>(i)).prev_thread);
static_assert(std::atomic_ref<KThread*>::is_always_lock_free);
// Atomically clear the previous thread if it's our target.
KThread* compare = thread;
prev_thread.compare_exchange_strong(compare, nullptr);
}
}
void KScheduler::OnThreadStateChanged(KernelCore& kernel, KThread* thread, ThreadState old_state) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Check if the state has changed, because if it hasn't there's nothing to do.
const auto cur_state = thread->GetRawState();
if (cur_state == old_state) {
return;
}
// Update the priority queues.
if (old_state == ThreadState::Runnable) {
// If we were previously runnable, then we're not runnable now, and we should remove.
GetPriorityQueue(kernel).Remove(thread);
IncrementScheduledCount(thread);
SetSchedulerUpdateNeeded(kernel);
} else if (cur_state == ThreadState::Runnable) {
// If we're now runnable, then we weren't previously, and we should add.
GetPriorityQueue(kernel).PushBack(thread);
IncrementScheduledCount(thread);
SetSchedulerUpdateNeeded(kernel);
}
}
void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s32 old_priority) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// If the thread is runnable, we want to change its priority in the queue.
if (thread->GetRawState() == ThreadState::Runnable) {
GetPriorityQueue(kernel).ChangePriority(
old_priority, thread == kernel.CurrentScheduler()->GetCurrentThread(), thread);
IncrementScheduledCount(thread);
SetSchedulerUpdateNeeded(kernel);
}
}
void KScheduler::OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread,
const KAffinityMask& old_affinity, s32 old_core) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// If the thread is runnable, we want to change its affinity in the queue.
if (thread->GetRawState() == ThreadState::Runnable) {
GetPriorityQueue(kernel).ChangeAffinityMask(old_core, old_affinity, thread);
IncrementScheduledCount(thread);
SetSchedulerUpdateNeeded(kernel);
}
}
void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
ASSERT(system.GlobalSchedulerContext().IsLocked());
// Get a reference to the priority queue.
auto& kernel = system.Kernel();
auto& priority_queue = GetPriorityQueue(kernel);
// Rotate the front of the queue to the end.
KThread* top_thread = priority_queue.GetScheduledFront(cpu_core_id, priority);
KThread* next_thread = nullptr;
if (top_thread != nullptr) {
next_thread = priority_queue.MoveToScheduledBack(top_thread);
if (next_thread != top_thread) {
IncrementScheduledCount(top_thread);
IncrementScheduledCount(next_thread);
}
}
// While we have a suggested thread, try to migrate it!
{
KThread* suggested = priority_queue.GetSuggestedFront(cpu_core_id, priority);
while (suggested != nullptr) {
// Check if the suggested thread is the top thread on its core.
const s32 suggested_core = suggested->GetActiveCore();
if (KThread* top_on_suggested_core =
(suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
: nullptr;
top_on_suggested_core != suggested) {
// If the next thread is a new thread that has been waiting longer than our
// suggestion, we prefer it to our suggestion.
if (top_thread != next_thread && next_thread != nullptr &&
next_thread->GetLastScheduledTick() < suggested->GetLastScheduledTick()) {
suggested = nullptr;
break;
}
// If we're allowed to do a migration, do one.
// NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the suggestion
// to the front of the queue.
if (top_on_suggested_core == nullptr ||
top_on_suggested_core->GetPriority() >= HighestCoreMigrationAllowedPriority) {
suggested->SetActiveCore(cpu_core_id);
priority_queue.ChangeCore(suggested_core, suggested, true);
IncrementScheduledCount(suggested);
break;
}
}
// Get the next suggestion.
suggested = priority_queue.GetSamePriorityNext(cpu_core_id, suggested);
}
}
// Now that we might have migrated a thread with the same priority, check if we can do better.
{
KThread* best_thread = priority_queue.GetScheduledFront(cpu_core_id);
if (best_thread == GetCurrentThread()) {
best_thread = priority_queue.GetScheduledNext(cpu_core_id, best_thread);
}
// If the best thread we can choose has a priority the same or worse than ours, try to
// migrate a higher priority thread.
if (best_thread != nullptr && best_thread->GetPriority() >= priority) {
KThread* suggested = priority_queue.GetSuggestedFront(cpu_core_id);
while (suggested != nullptr) {
// If the suggestion's priority is the same as ours, don't bother.
if (suggested->GetPriority() >= best_thread->GetPriority()) {
break;
}
// Check if the suggested thread is the top thread on its core.
const s32 suggested_core = suggested->GetActiveCore();
if (KThread* top_on_suggested_core =
(suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
: nullptr;
top_on_suggested_core != suggested) {
// If we're allowed to do a migration, do one.
// NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the
// suggestion to the front of the queue.
if (top_on_suggested_core == nullptr ||
top_on_suggested_core->GetPriority() >=
HighestCoreMigrationAllowedPriority) {
suggested->SetActiveCore(cpu_core_id);
priority_queue.ChangeCore(suggested_core, suggested, true);
IncrementScheduledCount(suggested);
break;
}
}
// Get the next suggestion.
suggested = priority_queue.GetSuggestedNext(cpu_core_id, suggested);
}
}
}
// After a rotation, we need a scheduler update.
SetSchedulerUpdateNeeded(kernel);
}
bool KScheduler::CanSchedule(KernelCore& kernel) {
return kernel.CurrentScheduler()->GetCurrentThread()->GetDisableDispatchCount() <= 1;
}
bool KScheduler::IsSchedulerUpdateNeeded(const KernelCore& kernel) {
return kernel.GlobalSchedulerContext().scheduler_update_needed.load(std::memory_order_acquire);
}
void KScheduler::SetSchedulerUpdateNeeded(KernelCore& kernel) {
kernel.GlobalSchedulerContext().scheduler_update_needed.store(true, std::memory_order_release);
}
void KScheduler::ClearSchedulerUpdateNeeded(KernelCore& kernel) {
kernel.GlobalSchedulerContext().scheduler_update_needed.store(false, std::memory_order_release);
}
void KScheduler::DisableScheduling(KernelCore& kernel) {
if (auto* scheduler = kernel.CurrentScheduler(); scheduler) {
ASSERT(scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 0);
scheduler->GetCurrentThread()->DisableDispatch();
}
}
void KScheduler::EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling) {
if (auto* scheduler = kernel.CurrentScheduler(); scheduler) {
ASSERT(scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 1);
if (scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 1) {
scheduler->GetCurrentThread()->EnableDispatch();
}
}
RescheduleCores(kernel, cores_needing_scheduling);
}
u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) {
if (IsSchedulerUpdateNeeded(kernel)) {
return UpdateHighestPriorityThreadsImpl(kernel);
} else {
return 0;
}
}
KSchedulerPriorityQueue& KScheduler::GetPriorityQueue(KernelCore& kernel) {
return kernel.GlobalSchedulerContext().priority_queue;
}
void KScheduler::YieldWithoutCoreMigration(KernelCore& kernel) {
// Validate preconditions.
ASSERT(CanSchedule(kernel));
ASSERT(kernel.CurrentProcess() != nullptr);
// Get the current thread and process.
KThread& cur_thread = Kernel::GetCurrentThread(kernel);
KProcess& cur_process = *kernel.CurrentProcess();
// If the thread's yield count matches, there's nothing for us to do.
if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
return;
}
// Get a reference to the priority queue.
auto& priority_queue = GetPriorityQueue(kernel);
// Perform the yield.
{
KScopedSchedulerLock lock(kernel);
const auto cur_state = cur_thread.GetRawState();
if (cur_state == ThreadState::Runnable) {
// Put the current thread at the back of the queue.
KThread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread));
IncrementScheduledCount(std::addressof(cur_thread));
// If the next thread is different, we have an update to perform.
if (next_thread != std::addressof(cur_thread)) {
SetSchedulerUpdateNeeded(kernel);
} else {
// Otherwise, set the thread's yield count so that we won't waste work until the
// process is scheduled again.
cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
}
}
}
}
void KScheduler::YieldWithCoreMigration(KernelCore& kernel) {
// Validate preconditions.
ASSERT(CanSchedule(kernel));
ASSERT(kernel.CurrentProcess() != nullptr);
// Get the current thread and process.
KThread& cur_thread = Kernel::GetCurrentThread(kernel);
KProcess& cur_process = *kernel.CurrentProcess();
// If the thread's yield count matches, there's nothing for us to do.
if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
return;
}
// Get a reference to the priority queue.
auto& priority_queue = GetPriorityQueue(kernel);
// Perform the yield.
{
KScopedSchedulerLock lock(kernel);
const auto cur_state = cur_thread.GetRawState();
if (cur_state == ThreadState::Runnable) {
// Get the current active core.
const s32 core_id = cur_thread.GetActiveCore();
// Put the current thread at the back of the queue.
KThread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread));
IncrementScheduledCount(std::addressof(cur_thread));
// While we have a suggested thread, try to migrate it!
bool recheck = false;
KThread* suggested = priority_queue.GetSuggestedFront(core_id);
while (suggested != nullptr) {
// Check if the suggested thread is the thread running on its core.
const s32 suggested_core = suggested->GetActiveCore();
if (KThread* running_on_suggested_core =
(suggested_core >= 0)
? kernel.Scheduler(suggested_core).state.highest_priority_thread
: nullptr;
running_on_suggested_core != suggested) {
// If the current thread's priority is higher than our suggestion's we prefer
// the next thread to the suggestion. We also prefer the next thread when the
// current thread's priority is equal to the suggestions, but the next thread
// has been waiting longer.
if ((suggested->GetPriority() > cur_thread.GetPriority()) ||
(suggested->GetPriority() == cur_thread.GetPriority() &&
next_thread != std::addressof(cur_thread) &&
next_thread->GetLastScheduledTick() < suggested->GetLastScheduledTick())) {
suggested = nullptr;
break;
}
// If we're allowed to do a migration, do one.
// NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the
// suggestion to the front of the queue.
if (running_on_suggested_core == nullptr ||
running_on_suggested_core->GetPriority() >=
HighestCoreMigrationAllowedPriority) {
suggested->SetActiveCore(core_id);
priority_queue.ChangeCore(suggested_core, suggested, true);
IncrementScheduledCount(suggested);
break;
} else {
// We couldn't perform a migration, but we should check again on a future
// yield.
recheck = true;
}
}
// Get the next suggestion.
suggested = priority_queue.GetSuggestedNext(core_id, suggested);
}
// If we still have a suggestion or the next thread is different, we have an update to
// perform.
if (suggested != nullptr || next_thread != std::addressof(cur_thread)) {
SetSchedulerUpdateNeeded(kernel);
} else if (!recheck) {
// Otherwise if we don't need to re-check, set the thread's yield count so that we
// won't waste work until the process is scheduled again.
cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
}
}
}
}
void KScheduler::YieldToAnyThread(KernelCore& kernel) {
// Validate preconditions.
ASSERT(CanSchedule(kernel));
ASSERT(kernel.CurrentProcess() != nullptr);
// Get the current thread and process.
KThread& cur_thread = Kernel::GetCurrentThread(kernel);
KProcess& cur_process = *kernel.CurrentProcess();
// If the thread's yield count matches, there's nothing for us to do.
if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
return;
}
// Get a reference to the priority queue.
auto& priority_queue = GetPriorityQueue(kernel);
// Perform the yield.
{
KScopedSchedulerLock lock(kernel);
const auto cur_state = cur_thread.GetRawState();
if (cur_state == ThreadState::Runnable) {
// Get the current active core.
const s32 core_id = cur_thread.GetActiveCore();
// Migrate the current thread to core -1.
cur_thread.SetActiveCore(-1);
priority_queue.ChangeCore(core_id, std::addressof(cur_thread));
IncrementScheduledCount(std::addressof(cur_thread));
// If there's nothing scheduled, we can try to perform a migration.
if (priority_queue.GetScheduledFront(core_id) == nullptr) {
// While we have a suggested thread, try to migrate it!
KThread* suggested = priority_queue.GetSuggestedFront(core_id);
while (suggested != nullptr) {
// Check if the suggested thread is the top thread on its core.
const s32 suggested_core = suggested->GetActiveCore();
if (KThread* top_on_suggested_core =
(suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
: nullptr;
top_on_suggested_core != suggested) {
// If we're allowed to do a migration, do one.
if (top_on_suggested_core == nullptr ||
top_on_suggested_core->GetPriority() >=
HighestCoreMigrationAllowedPriority) {
suggested->SetActiveCore(core_id);
priority_queue.ChangeCore(suggested_core, suggested);
IncrementScheduledCount(suggested);
}
// Regardless of whether we migrated, we had a candidate, so we're done.
break;
}
// Get the next suggestion.
suggested = priority_queue.GetSuggestedNext(core_id, suggested);
}
// If the suggestion is different from the current thread, we need to perform an
// update.
if (suggested != std::addressof(cur_thread)) {
SetSchedulerUpdateNeeded(kernel);
} else {
// Otherwise, set the thread's yield count so that we won't waste work until the
// process is scheduled again.
cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
}
} else {
// Otherwise, we have an update to perform.
SetSchedulerUpdateNeeded(kernel);
}
}
}
}
KScheduler::KScheduler(Core::System& system_, s32 core_id_) : system{system_}, core_id{core_id_} {
switch_fiber = std::make_shared<Common::Fiber>(OnSwitch, this);
state.needs_scheduling.store(true);
state.interrupt_task_thread_runnable = false;
state.should_count_idle = false;
state.idle_count = 0;
state.idle_thread_stack = nullptr;
state.highest_priority_thread = nullptr;
}
void KScheduler::Finalize() {
if (idle_thread) {
idle_thread->Close();
idle_thread = nullptr;
}
}
KScheduler::~KScheduler() {
ASSERT(!idle_thread);
}
KThread* KScheduler::GetCurrentThread() const {
if (auto result = current_thread.load(); result) {
return result;
}
return idle_thread;
}
u64 KScheduler::GetLastContextSwitchTicks() const {
return last_context_switch_time;
}
void KScheduler::RescheduleCurrentCore() {
ASSERT(GetCurrentThread()->GetDisableDispatchCount() == 1);
auto& phys_core = system.Kernel().PhysicalCore(core_id);
if (phys_core.IsInterrupted()) {
phys_core.ClearInterrupt();
}
guard.Lock();
if (state.needs_scheduling.load()) {
Schedule();
} else {
GetCurrentThread()->EnableDispatch();
guard.Unlock();
}
}
void KScheduler::OnThreadStart() {
SwitchContextStep2();
}
void KScheduler::Unload(KThread* thread) {
ASSERT(thread);
if (!thread) {
return;
}
LOG_TRACE(Kernel, "core {}, unload thread {}", core_id, thread ? thread->GetName() : "nullptr");
if (thread->IsCallingSvc()) {
thread->ClearIsCallingSvc();
}
auto& physical_core = system.Kernel().PhysicalCore(core_id);
if (!physical_core.IsInitialized()) {
return;
}
Core::ARM_Interface& cpu_core = physical_core.ArmInterface();
cpu_core.SaveContext(thread->GetContext32());
cpu_core.SaveContext(thread->GetContext64());
// Save the TPIDR_EL0 system register in case it was modified.
thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
cpu_core.ClearExclusiveState();
if (!thread->IsTerminationRequested() && thread->GetActiveCore() == core_id) {
prev_thread = thread;
} else {
prev_thread = nullptr;
}
thread->context_guard.Unlock();
}
void KScheduler::Reload(KThread* thread) {
LOG_TRACE(Kernel, "core {}, reload thread {}", core_id, thread ? thread->GetName() : "nullptr");
if (thread) {
ASSERT_MSG(thread->GetState() == ThreadState::Runnable, "Thread must be runnable.");
auto* const thread_owner_process = thread->GetOwnerProcess();
if (thread_owner_process != nullptr) {
system.Kernel().MakeCurrentProcess(thread_owner_process);
}
Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
cpu_core.LoadContext(thread->GetContext32());
cpu_core.LoadContext(thread->GetContext64());
cpu_core.SetTlsAddress(thread->GetTLSAddress());
cpu_core.SetTPIDR_EL0(thread->GetTPIDR_EL0());
cpu_core.ClearExclusiveState();
}
}
void KScheduler::SwitchContextStep2() {
// Load context of new thread
Reload(current_thread.load());
RescheduleCurrentCore();
}
void KScheduler::ScheduleImpl() {
KThread* previous_thread = current_thread.load();
KThread* next_thread = state.highest_priority_thread;
state.needs_scheduling = false;
// We never want to schedule a null thread, so use the idle thread if we don't have a next.
if (next_thread == nullptr) {
next_thread = idle_thread;
}
// If we're not actually switching thread, there's nothing to do.
if (next_thread == current_thread.load()) {
guard.Unlock();
return;
}
current_thread.store(next_thread);
KProcess* const previous_process = system.Kernel().CurrentProcess();
UpdateLastContextSwitchTime(previous_thread, previous_process);
// Save context for previous thread
Unload(previous_thread);
std::shared_ptr<Common::Fiber>* old_context;
if (previous_thread != nullptr) {
old_context = &previous_thread->GetHostContext();
} else {
old_context = &idle_thread->GetHostContext();
}
guard.Unlock();
Common::Fiber::YieldTo(*old_context, *switch_fiber);
/// When a thread wakes up, the scheduler may have changed to other in another core.
auto& next_scheduler = *system.Kernel().CurrentScheduler();
next_scheduler.SwitchContextStep2();
}
void KScheduler::OnSwitch(void* this_scheduler) {
KScheduler* sched = static_cast<KScheduler*>(this_scheduler);
sched->SwitchToCurrent();
}
void KScheduler::SwitchToCurrent() {
while (true) {
{
KScopedSpinLock lk{guard};
current_thread.store(state.highest_priority_thread);
state.needs_scheduling.store(false);
}
const auto is_switch_pending = [this] {
KScopedSpinLock lk{guard};
return state.needs_scheduling.load();
};
do {
auto next_thread = current_thread.load();
if (next_thread != nullptr) {
next_thread->context_guard.Lock();
if (next_thread->GetRawState() != ThreadState::Runnable) {
next_thread->context_guard.Unlock();
break;
}
if (next_thread->GetActiveCore() != core_id) {
next_thread->context_guard.Unlock();
break;
}
}
auto thread = next_thread ? next_thread : idle_thread;
Common::Fiber::YieldTo(switch_fiber, *thread->GetHostContext());
} while (!is_switch_pending());
}
}
void KScheduler::UpdateLastContextSwitchTime(KThread* thread, KProcess* process) {
const u64 prev_switch_ticks = last_context_switch_time;
const u64 most_recent_switch_ticks = system.CoreTiming().GetCPUTicks();
const u64 update_ticks = most_recent_switch_ticks - prev_switch_ticks;
if (thread != nullptr) {
thread->AddCpuTime(core_id, update_ticks);
}
if (process != nullptr) {
process->UpdateCPUTimeTicks(update_ticks);
}
last_context_switch_time = most_recent_switch_ticks;
}
void KScheduler::Initialize() {
idle_thread = KThread::Create(system.Kernel());
ASSERT(KThread::InitializeIdleThread(system, idle_thread, core_id).IsSuccess());
2021-04-02 23:25:32 -07:00
idle_thread->SetName(fmt::format("IdleThread:{}", core_id));
}
KScopedSchedulerLock::KScopedSchedulerLock(KernelCore& kernel)
: KScopedLock(kernel.GlobalSchedulerContext().SchedulerLock()) {}
KScopedSchedulerLock::~KScopedSchedulerLock() = default;
} // namespace Kernel