mirror of
https://github.com/starr-dusT/yuzu-mainline
synced 2024-03-05 21:12:25 -08:00
Merge pull request #7919 from bunnei/phys-mem-updates
core: hle: kernel: KPageTable: Improve Un/MapPhysicalMemory.
This commit is contained in:
commit
21f5912ec9
@ -10,11 +10,65 @@ PageTable::PageTable() = default;
|
|||||||
|
|
||||||
PageTable::~PageTable() noexcept = default;
|
PageTable::~PageTable() noexcept = default;
|
||||||
|
|
||||||
void PageTable::Resize(size_t address_space_width_in_bits, size_t page_size_in_bits) {
|
bool PageTable::BeginTraversal(TraversalEntry& out_entry, TraversalContext& out_context,
|
||||||
const size_t num_page_table_entries{1ULL << (address_space_width_in_bits - page_size_in_bits)};
|
u64 address) const {
|
||||||
|
// Setup invalid defaults.
|
||||||
|
out_entry.phys_addr = 0;
|
||||||
|
out_entry.block_size = page_size;
|
||||||
|
out_context.next_page = 0;
|
||||||
|
|
||||||
|
// Validate that we can read the actual entry.
|
||||||
|
const auto page = address / page_size;
|
||||||
|
if (page >= backing_addr.size()) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Validate that the entry is mapped.
|
||||||
|
const auto phys_addr = backing_addr[page];
|
||||||
|
if (phys_addr == 0) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Populate the results.
|
||||||
|
out_entry.phys_addr = phys_addr + address;
|
||||||
|
out_context.next_page = page + 1;
|
||||||
|
out_context.next_offset = address + page_size;
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool PageTable::ContinueTraversal(TraversalEntry& out_entry, TraversalContext& context) const {
|
||||||
|
// Setup invalid defaults.
|
||||||
|
out_entry.phys_addr = 0;
|
||||||
|
out_entry.block_size = page_size;
|
||||||
|
|
||||||
|
// Validate that we can read the actual entry.
|
||||||
|
const auto page = context.next_page;
|
||||||
|
if (page >= backing_addr.size()) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Validate that the entry is mapped.
|
||||||
|
const auto phys_addr = backing_addr[page];
|
||||||
|
if (phys_addr == 0) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Populate the results.
|
||||||
|
out_entry.phys_addr = phys_addr + context.next_offset;
|
||||||
|
context.next_page = page + 1;
|
||||||
|
context.next_offset += page_size;
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void PageTable::Resize(std::size_t address_space_width_in_bits, std::size_t page_size_in_bits) {
|
||||||
|
const std::size_t num_page_table_entries{1ULL
|
||||||
|
<< (address_space_width_in_bits - page_size_in_bits)};
|
||||||
pointers.resize(num_page_table_entries);
|
pointers.resize(num_page_table_entries);
|
||||||
backing_addr.resize(num_page_table_entries);
|
backing_addr.resize(num_page_table_entries);
|
||||||
current_address_space_width_in_bits = address_space_width_in_bits;
|
current_address_space_width_in_bits = address_space_width_in_bits;
|
||||||
|
page_size = 1ULL << page_size_in_bits;
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace Common
|
} // namespace Common
|
||||||
|
@ -27,6 +27,16 @@ enum class PageType : u8 {
|
|||||||
* mimics the way a real CPU page table works.
|
* mimics the way a real CPU page table works.
|
||||||
*/
|
*/
|
||||||
struct PageTable {
|
struct PageTable {
|
||||||
|
struct TraversalEntry {
|
||||||
|
u64 phys_addr{};
|
||||||
|
std::size_t block_size{};
|
||||||
|
};
|
||||||
|
|
||||||
|
struct TraversalContext {
|
||||||
|
u64 next_page{};
|
||||||
|
u64 next_offset{};
|
||||||
|
};
|
||||||
|
|
||||||
/// Number of bits reserved for attribute tagging.
|
/// Number of bits reserved for attribute tagging.
|
||||||
/// This can be at most the guaranteed alignment of the pointers in the page table.
|
/// This can be at most the guaranteed alignment of the pointers in the page table.
|
||||||
static constexpr int ATTRIBUTE_BITS = 2;
|
static constexpr int ATTRIBUTE_BITS = 2;
|
||||||
@ -89,6 +99,10 @@ struct PageTable {
|
|||||||
PageTable(PageTable&&) noexcept = default;
|
PageTable(PageTable&&) noexcept = default;
|
||||||
PageTable& operator=(PageTable&&) noexcept = default;
|
PageTable& operator=(PageTable&&) noexcept = default;
|
||||||
|
|
||||||
|
bool BeginTraversal(TraversalEntry& out_entry, TraversalContext& out_context,
|
||||||
|
u64 address) const;
|
||||||
|
bool ContinueTraversal(TraversalEntry& out_entry, TraversalContext& context) const;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Resizes the page table to be able to accommodate enough pages within
|
* Resizes the page table to be able to accommodate enough pages within
|
||||||
* a given address space.
|
* a given address space.
|
||||||
@ -96,9 +110,9 @@ struct PageTable {
|
|||||||
* @param address_space_width_in_bits The address size width in bits.
|
* @param address_space_width_in_bits The address size width in bits.
|
||||||
* @param page_size_in_bits The page size in bits.
|
* @param page_size_in_bits The page size in bits.
|
||||||
*/
|
*/
|
||||||
void Resize(size_t address_space_width_in_bits, size_t page_size_in_bits);
|
void Resize(std::size_t address_space_width_in_bits, std::size_t page_size_in_bits);
|
||||||
|
|
||||||
size_t GetAddressSpaceBits() const {
|
std::size_t GetAddressSpaceBits() const {
|
||||||
return current_address_space_width_in_bits;
|
return current_address_space_width_in_bits;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -110,9 +124,11 @@ struct PageTable {
|
|||||||
|
|
||||||
VirtualBuffer<u64> backing_addr;
|
VirtualBuffer<u64> backing_addr;
|
||||||
|
|
||||||
size_t current_address_space_width_in_bits;
|
std::size_t current_address_space_width_in_bits{};
|
||||||
|
|
||||||
u8* fastmem_arena;
|
u8* fastmem_arena{};
|
||||||
|
|
||||||
|
std::size_t page_size{};
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace Common
|
} // namespace Common
|
||||||
|
@ -41,24 +41,6 @@ constexpr std::size_t GetAddressSpaceWidthFromType(FileSys::ProgramAddressSpaceT
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
constexpr u64 GetAddressInRange(const KMemoryInfo& info, VAddr addr) {
|
|
||||||
if (info.GetAddress() < addr) {
|
|
||||||
return addr;
|
|
||||||
}
|
|
||||||
return info.GetAddress();
|
|
||||||
}
|
|
||||||
|
|
||||||
constexpr std::size_t GetSizeInRange(const KMemoryInfo& info, VAddr start, VAddr end) {
|
|
||||||
std::size_t size{info.GetSize()};
|
|
||||||
if (info.GetAddress() < start) {
|
|
||||||
size -= start - info.GetAddress();
|
|
||||||
}
|
|
||||||
if (info.GetEndAddress() > end) {
|
|
||||||
size -= info.GetEndAddress() - end;
|
|
||||||
}
|
|
||||||
return size;
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
KPageTable::KPageTable(Core::System& system_)
|
KPageTable::KPageTable(Core::System& system_)
|
||||||
@ -400,148 +382,471 @@ ResultCode KPageTable::UnmapProcessMemory(VAddr dst_addr, std::size_t size,
|
|||||||
return ResultSuccess;
|
return ResultSuccess;
|
||||||
}
|
}
|
||||||
|
|
||||||
ResultCode KPageTable::MapPhysicalMemory(VAddr addr, std::size_t size) {
|
ResultCode KPageTable::MapPhysicalMemory(VAddr address, std::size_t size) {
|
||||||
// Lock the physical memory lock.
|
// Lock the physical memory lock.
|
||||||
KScopedLightLock map_phys_mem_lk(map_physical_memory_lock);
|
KScopedLightLock map_phys_mem_lk(map_physical_memory_lock);
|
||||||
|
|
||||||
|
// Calculate the last address for convenience.
|
||||||
|
const VAddr last_address = address + size - 1;
|
||||||
|
|
||||||
|
// Define iteration variables.
|
||||||
|
VAddr cur_address;
|
||||||
|
std::size_t mapped_size;
|
||||||
|
|
||||||
|
// The entire mapping process can be retried.
|
||||||
|
while (true) {
|
||||||
|
// Check if the memory is already mapped.
|
||||||
|
{
|
||||||
// Lock the table.
|
// Lock the table.
|
||||||
KScopedLightLock lk(general_lock);
|
KScopedLightLock lk(general_lock);
|
||||||
|
|
||||||
std::size_t mapped_size{};
|
// Iterate over the memory.
|
||||||
const VAddr end_addr{addr + size};
|
cur_address = address;
|
||||||
|
mapped_size = 0;
|
||||||
|
|
||||||
block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) {
|
auto it = block_manager->FindIterator(cur_address);
|
||||||
if (info.state != KMemoryState::Free) {
|
while (true) {
|
||||||
mapped_size += GetSizeInRange(info, addr, end_addr);
|
// Check that the iterator is valid.
|
||||||
|
ASSERT(it != block_manager->end());
|
||||||
|
|
||||||
|
// Get the memory info.
|
||||||
|
const KMemoryInfo info = it->GetMemoryInfo();
|
||||||
|
|
||||||
|
// Check if we're done.
|
||||||
|
if (last_address <= info.GetLastAddress()) {
|
||||||
|
if (info.GetState() != KMemoryState::Free) {
|
||||||
|
mapped_size += (last_address + 1 - cur_address);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Track the memory if it's mapped.
|
||||||
|
if (info.GetState() != KMemoryState::Free) {
|
||||||
|
mapped_size += VAddr(info.GetEndAddress()) - cur_address;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Advance.
|
||||||
|
cur_address = info.GetEndAddress();
|
||||||
|
++it;
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the size mapped is the size requested, we've nothing to do.
|
||||||
|
R_SUCCEED_IF(size == mapped_size);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Allocate and map the memory.
|
||||||
|
{
|
||||||
|
// Reserve the memory from the process resource limit.
|
||||||
|
KScopedResourceReservation memory_reservation(
|
||||||
|
system.Kernel().CurrentProcess()->GetResourceLimit(),
|
||||||
|
LimitableResource::PhysicalMemory, size - mapped_size);
|
||||||
|
R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
|
||||||
|
|
||||||
|
// Allocate pages for the new memory.
|
||||||
|
KPageLinkedList page_linked_list;
|
||||||
|
R_TRY(system.Kernel().MemoryManager().Allocate(
|
||||||
|
page_linked_list, (size - mapped_size) / PageSize, memory_pool, allocation_option));
|
||||||
|
|
||||||
|
// Map the memory.
|
||||||
|
{
|
||||||
|
// Lock the table.
|
||||||
|
KScopedLightLock lk(general_lock);
|
||||||
|
|
||||||
|
size_t num_allocator_blocks = 0;
|
||||||
|
|
||||||
|
// Verify that nobody has mapped memory since we first checked.
|
||||||
|
{
|
||||||
|
// Iterate over the memory.
|
||||||
|
size_t checked_mapped_size = 0;
|
||||||
|
cur_address = address;
|
||||||
|
|
||||||
|
auto it = block_manager->FindIterator(cur_address);
|
||||||
|
while (true) {
|
||||||
|
// Check that the iterator is valid.
|
||||||
|
ASSERT(it != block_manager->end());
|
||||||
|
|
||||||
|
// Get the memory info.
|
||||||
|
const KMemoryInfo info = it->GetMemoryInfo();
|
||||||
|
|
||||||
|
const bool is_free = info.GetState() == KMemoryState::Free;
|
||||||
|
if (is_free) {
|
||||||
|
if (info.GetAddress() < address) {
|
||||||
|
++num_allocator_blocks;
|
||||||
|
}
|
||||||
|
if (last_address < info.GetLastAddress()) {
|
||||||
|
++num_allocator_blocks;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check if we're done.
|
||||||
|
if (last_address <= info.GetLastAddress()) {
|
||||||
|
if (!is_free) {
|
||||||
|
checked_mapped_size += (last_address + 1 - cur_address);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Track the memory if it's mapped.
|
||||||
|
if (!is_free) {
|
||||||
|
checked_mapped_size += VAddr(info.GetEndAddress()) - cur_address;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Advance.
|
||||||
|
cur_address = info.GetEndAddress();
|
||||||
|
++it;
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the size now isn't what it was before, somebody mapped or unmapped
|
||||||
|
// concurrently. If this happened, retry.
|
||||||
|
if (mapped_size != checked_mapped_size) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Reset the current tracking address, and make sure we clean up on failure.
|
||||||
|
cur_address = address;
|
||||||
|
auto unmap_guard = detail::ScopeExit([&] {
|
||||||
|
if (cur_address > address) {
|
||||||
|
const VAddr last_unmap_address = cur_address - 1;
|
||||||
|
|
||||||
|
// Iterate, unmapping the pages.
|
||||||
|
cur_address = address;
|
||||||
|
|
||||||
|
auto it = block_manager->FindIterator(cur_address);
|
||||||
|
while (true) {
|
||||||
|
// Check that the iterator is valid.
|
||||||
|
ASSERT(it != block_manager->end());
|
||||||
|
|
||||||
|
// Get the memory info.
|
||||||
|
const KMemoryInfo info = it->GetMemoryInfo();
|
||||||
|
|
||||||
|
// If the memory state is free, we mapped it and need to unmap it.
|
||||||
|
if (info.GetState() == KMemoryState::Free) {
|
||||||
|
// Determine the range to unmap.
|
||||||
|
const size_t cur_pages =
|
||||||
|
std::min(VAddr(info.GetEndAddress()) - cur_address,
|
||||||
|
last_unmap_address + 1 - cur_address) /
|
||||||
|
PageSize;
|
||||||
|
|
||||||
|
// Unmap.
|
||||||
|
ASSERT(Operate(cur_address, cur_pages, KMemoryPermission::None,
|
||||||
|
OperationType::Unmap)
|
||||||
|
.IsSuccess());
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check if we're done.
|
||||||
|
if (last_unmap_address <= info.GetLastAddress()) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Advance.
|
||||||
|
cur_address = info.GetEndAddress();
|
||||||
|
++it;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
if (mapped_size == size) {
|
// Iterate over the memory.
|
||||||
return ResultSuccess;
|
auto pg_it = page_linked_list.Nodes().begin();
|
||||||
|
PAddr pg_phys_addr = pg_it->GetAddress();
|
||||||
|
size_t pg_pages = pg_it->GetNumPages();
|
||||||
|
|
||||||
|
auto it = block_manager->FindIterator(cur_address);
|
||||||
|
while (true) {
|
||||||
|
// Check that the iterator is valid.
|
||||||
|
ASSERT(it != block_manager->end());
|
||||||
|
|
||||||
|
// Get the memory info.
|
||||||
|
const KMemoryInfo info = it->GetMemoryInfo();
|
||||||
|
|
||||||
|
// If it's unmapped, we need to map it.
|
||||||
|
if (info.GetState() == KMemoryState::Free) {
|
||||||
|
// Determine the range to map.
|
||||||
|
size_t map_pages = std::min(VAddr(info.GetEndAddress()) - cur_address,
|
||||||
|
last_address + 1 - cur_address) /
|
||||||
|
PageSize;
|
||||||
|
|
||||||
|
// While we have pages to map, map them.
|
||||||
|
while (map_pages > 0) {
|
||||||
|
// Check if we're at the end of the physical block.
|
||||||
|
if (pg_pages == 0) {
|
||||||
|
// Ensure there are more pages to map.
|
||||||
|
ASSERT(pg_it != page_linked_list.Nodes().end());
|
||||||
|
|
||||||
|
// Advance our physical block.
|
||||||
|
++pg_it;
|
||||||
|
pg_phys_addr = pg_it->GetAddress();
|
||||||
|
pg_pages = pg_it->GetNumPages();
|
||||||
}
|
}
|
||||||
|
|
||||||
const std::size_t remaining_size{size - mapped_size};
|
// Map whatever we can.
|
||||||
const std::size_t remaining_pages{remaining_size / PageSize};
|
const size_t cur_pages = std::min(pg_pages, map_pages);
|
||||||
|
R_TRY(Operate(cur_address, cur_pages, KMemoryPermission::UserReadWrite,
|
||||||
|
OperationType::Map, pg_phys_addr));
|
||||||
|
|
||||||
// Reserve the memory from the process resource limit.
|
// Advance.
|
||||||
KScopedResourceReservation memory_reservation(
|
cur_address += cur_pages * PageSize;
|
||||||
system.Kernel().CurrentProcess()->GetResourceLimit(), LimitableResource::PhysicalMemory,
|
map_pages -= cur_pages;
|
||||||
remaining_size);
|
|
||||||
if (!memory_reservation.Succeeded()) {
|
pg_phys_addr += cur_pages * PageSize;
|
||||||
LOG_ERROR(Kernel, "Could not reserve remaining {:X} bytes", remaining_size);
|
pg_pages -= cur_pages;
|
||||||
return ResultLimitReached;
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
KPageLinkedList page_linked_list;
|
// Check if we're done.
|
||||||
|
if (last_address <= info.GetLastAddress()) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
CASCADE_CODE(system.Kernel().MemoryManager().Allocate(page_linked_list, remaining_pages,
|
// Advance.
|
||||||
memory_pool, allocation_option));
|
cur_address = info.GetEndAddress();
|
||||||
|
++it;
|
||||||
|
}
|
||||||
|
|
||||||
// We succeeded, so commit the memory reservation.
|
// We succeeded, so commit the memory reservation.
|
||||||
memory_reservation.Commit();
|
memory_reservation.Commit();
|
||||||
|
|
||||||
// Map the memory.
|
// Increase our tracked mapped size.
|
||||||
auto node{page_linked_list.Nodes().begin()};
|
mapped_physical_memory_size += (size - mapped_size);
|
||||||
PAddr map_addr{node->GetAddress()};
|
|
||||||
std::size_t src_num_pages{node->GetNumPages()};
|
|
||||||
block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) {
|
|
||||||
if (info.state != KMemoryState::Free) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::size_t dst_num_pages{GetSizeInRange(info, addr, end_addr) / PageSize};
|
// Update the relevant memory blocks.
|
||||||
VAddr dst_addr{GetAddressInRange(info, addr)};
|
block_manager->Update(address, size / PageSize, KMemoryState::Free,
|
||||||
|
KMemoryPermission::None, KMemoryAttribute::None,
|
||||||
|
KMemoryState::Normal, KMemoryPermission::UserReadWrite,
|
||||||
|
KMemoryAttribute::None);
|
||||||
|
|
||||||
while (dst_num_pages) {
|
// Cancel our guard.
|
||||||
if (!src_num_pages) {
|
unmap_guard.Cancel();
|
||||||
node = std::next(node);
|
|
||||||
map_addr = node->GetAddress();
|
|
||||||
src_num_pages = node->GetNumPages();
|
|
||||||
}
|
|
||||||
|
|
||||||
const std::size_t num_pages{std::min(src_num_pages, dst_num_pages)};
|
|
||||||
Operate(dst_addr, num_pages, KMemoryPermission::UserReadWrite, OperationType::Map,
|
|
||||||
map_addr);
|
|
||||||
|
|
||||||
dst_addr += num_pages * PageSize;
|
|
||||||
map_addr += num_pages * PageSize;
|
|
||||||
src_num_pages -= num_pages;
|
|
||||||
dst_num_pages -= num_pages;
|
|
||||||
}
|
|
||||||
});
|
|
||||||
|
|
||||||
mapped_physical_memory_size += remaining_size;
|
|
||||||
|
|
||||||
const std::size_t num_pages{size / PageSize};
|
|
||||||
block_manager->Update(addr, num_pages, KMemoryState::Free, KMemoryPermission::None,
|
|
||||||
KMemoryAttribute::None, KMemoryState::Normal,
|
|
||||||
KMemoryPermission::UserReadWrite, KMemoryAttribute::None);
|
|
||||||
|
|
||||||
return ResultSuccess;
|
return ResultSuccess;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
ResultCode KPageTable::UnmapPhysicalMemory(VAddr addr, std::size_t size) {
|
ResultCode KPageTable::UnmapPhysicalMemory(VAddr address, std::size_t size) {
|
||||||
// Lock the physical memory lock.
|
// Lock the physical memory lock.
|
||||||
KScopedLightLock map_phys_mem_lk(map_physical_memory_lock);
|
KScopedLightLock map_phys_mem_lk(map_physical_memory_lock);
|
||||||
|
|
||||||
// Lock the table.
|
// Lock the table.
|
||||||
KScopedLightLock lk(general_lock);
|
KScopedLightLock lk(general_lock);
|
||||||
|
|
||||||
const VAddr end_addr{addr + size};
|
// Calculate the last address for convenience.
|
||||||
ResultCode result{ResultSuccess};
|
const VAddr last_address = address + size - 1;
|
||||||
std::size_t mapped_size{};
|
|
||||||
|
|
||||||
// Verify that the region can be unmapped
|
// Define iteration variables.
|
||||||
block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) {
|
VAddr cur_address = 0;
|
||||||
if (info.state == KMemoryState::Normal) {
|
std::size_t mapped_size = 0;
|
||||||
if (info.attribute != KMemoryAttribute::None) {
|
std::size_t num_allocator_blocks = 0;
|
||||||
result = ResultInvalidCurrentMemory;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
mapped_size += GetSizeInRange(info, addr, end_addr);
|
|
||||||
} else if (info.state != KMemoryState::Free) {
|
|
||||||
result = ResultInvalidCurrentMemory;
|
|
||||||
}
|
|
||||||
});
|
|
||||||
|
|
||||||
if (result.IsError()) {
|
// Check if the memory is mapped.
|
||||||
return result;
|
{
|
||||||
|
// Iterate over the memory.
|
||||||
|
cur_address = address;
|
||||||
|
mapped_size = 0;
|
||||||
|
|
||||||
|
auto it = block_manager->FindIterator(cur_address);
|
||||||
|
while (true) {
|
||||||
|
// Check that the iterator is valid.
|
||||||
|
ASSERT(it != block_manager->end());
|
||||||
|
|
||||||
|
// Get the memory info.
|
||||||
|
const KMemoryInfo info = it->GetMemoryInfo();
|
||||||
|
|
||||||
|
// Verify the memory's state.
|
||||||
|
const bool is_normal = info.GetState() == KMemoryState::Normal &&
|
||||||
|
info.GetAttribute() == KMemoryAttribute::None;
|
||||||
|
const bool is_free = info.GetState() == KMemoryState::Free;
|
||||||
|
R_UNLESS(is_normal || is_free, ResultInvalidCurrentMemory);
|
||||||
|
|
||||||
|
if (is_normal) {
|
||||||
|
R_UNLESS(info.GetAttribute() == KMemoryAttribute::None, ResultInvalidCurrentMemory);
|
||||||
|
|
||||||
|
if (info.GetAddress() < address) {
|
||||||
|
++num_allocator_blocks;
|
||||||
|
}
|
||||||
|
if (last_address < info.GetLastAddress()) {
|
||||||
|
++num_allocator_blocks;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!mapped_size) {
|
// Check if we're done.
|
||||||
return ResultSuccess;
|
if (last_address <= info.GetLastAddress()) {
|
||||||
|
if (is_normal) {
|
||||||
|
mapped_size += (last_address + 1 - cur_address);
|
||||||
|
}
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Unmap each region within the range
|
// Track the memory if it's mapped.
|
||||||
KPageLinkedList page_linked_list;
|
if (is_normal) {
|
||||||
block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) {
|
mapped_size += VAddr(info.GetEndAddress()) - cur_address;
|
||||||
if (info.state == KMemoryState::Normal) {
|
}
|
||||||
const std::size_t block_size{GetSizeInRange(info, addr, end_addr)};
|
|
||||||
const std::size_t block_num_pages{block_size / PageSize};
|
|
||||||
const VAddr block_addr{GetAddressInRange(info, addr)};
|
|
||||||
|
|
||||||
AddRegionToPages(block_addr, block_size / PageSize, page_linked_list);
|
// Advance.
|
||||||
|
cur_address = info.GetEndAddress();
|
||||||
|
++it;
|
||||||
|
}
|
||||||
|
|
||||||
if (result = Operate(block_addr, block_num_pages, KMemoryPermission::None,
|
// If there's nothing mapped, we've nothing to do.
|
||||||
OperationType::Unmap);
|
R_SUCCEED_IF(mapped_size == 0);
|
||||||
result.IsError()) {
|
}
|
||||||
return;
|
|
||||||
|
// Make a page group for the unmap region.
|
||||||
|
KPageLinkedList pg;
|
||||||
|
{
|
||||||
|
auto& impl = this->PageTableImpl();
|
||||||
|
|
||||||
|
// Begin traversal.
|
||||||
|
Common::PageTable::TraversalContext context;
|
||||||
|
Common::PageTable::TraversalEntry cur_entry = {.phys_addr = 0, .block_size = 0};
|
||||||
|
bool cur_valid = false;
|
||||||
|
Common::PageTable::TraversalEntry next_entry;
|
||||||
|
bool next_valid = false;
|
||||||
|
size_t tot_size = 0;
|
||||||
|
|
||||||
|
cur_address = address;
|
||||||
|
next_valid = impl.BeginTraversal(next_entry, context, cur_address);
|
||||||
|
next_entry.block_size =
|
||||||
|
(next_entry.block_size - (next_entry.phys_addr & (next_entry.block_size - 1)));
|
||||||
|
|
||||||
|
// Iterate, building the group.
|
||||||
|
while (true) {
|
||||||
|
if ((!next_valid && !cur_valid) ||
|
||||||
|
(next_valid && cur_valid &&
|
||||||
|
next_entry.phys_addr == cur_entry.phys_addr + cur_entry.block_size)) {
|
||||||
|
cur_entry.block_size += next_entry.block_size;
|
||||||
|
} else {
|
||||||
|
if (cur_valid) {
|
||||||
|
// ASSERT(IsHeapPhysicalAddress(cur_entry.phys_addr));
|
||||||
|
R_TRY(pg.AddBlock(cur_entry.phys_addr, cur_entry.block_size / PageSize));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Update tracking variables.
|
||||||
|
tot_size += cur_entry.block_size;
|
||||||
|
cur_entry = next_entry;
|
||||||
|
cur_valid = next_valid;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (cur_entry.block_size + tot_size >= size) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
next_valid = impl.ContinueTraversal(next_entry, context);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add the last block.
|
||||||
|
if (cur_valid) {
|
||||||
|
// ASSERT(IsHeapPhysicalAddress(cur_entry.phys_addr));
|
||||||
|
R_TRY(pg.AddBlock(cur_entry.phys_addr, (size - tot_size) / PageSize));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ASSERT(pg.GetNumPages() == mapped_size / PageSize);
|
||||||
|
|
||||||
|
// Reset the current tracking address, and make sure we clean up on failure.
|
||||||
|
cur_address = address;
|
||||||
|
auto remap_guard = detail::ScopeExit([&] {
|
||||||
|
if (cur_address > address) {
|
||||||
|
const VAddr last_map_address = cur_address - 1;
|
||||||
|
cur_address = address;
|
||||||
|
|
||||||
|
// Iterate over the memory we unmapped.
|
||||||
|
auto it = block_manager->FindIterator(cur_address);
|
||||||
|
auto pg_it = pg.Nodes().begin();
|
||||||
|
PAddr pg_phys_addr = pg_it->GetAddress();
|
||||||
|
size_t pg_pages = pg_it->GetNumPages();
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
// Get the memory info for the pages we unmapped, convert to property.
|
||||||
|
const KMemoryInfo info = it->GetMemoryInfo();
|
||||||
|
|
||||||
|
// If the memory is normal, we unmapped it and need to re-map it.
|
||||||
|
if (info.GetState() == KMemoryState::Normal) {
|
||||||
|
// Determine the range to map.
|
||||||
|
size_t map_pages = std::min(VAddr(info.GetEndAddress()) - cur_address,
|
||||||
|
last_map_address + 1 - cur_address) /
|
||||||
|
PageSize;
|
||||||
|
|
||||||
|
// While we have pages to map, map them.
|
||||||
|
while (map_pages > 0) {
|
||||||
|
// Check if we're at the end of the physical block.
|
||||||
|
if (pg_pages == 0) {
|
||||||
|
// Ensure there are more pages to map.
|
||||||
|
ASSERT(pg_it != pg.Nodes().end());
|
||||||
|
|
||||||
|
// Advance our physical block.
|
||||||
|
++pg_it;
|
||||||
|
pg_phys_addr = pg_it->GetAddress();
|
||||||
|
pg_pages = pg_it->GetNumPages();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Map whatever we can.
|
||||||
|
const size_t cur_pages = std::min(pg_pages, map_pages);
|
||||||
|
ASSERT(this->Operate(cur_address, cur_pages, info.GetPermission(),
|
||||||
|
OperationType::Map, pg_phys_addr) == ResultSuccess);
|
||||||
|
|
||||||
|
// Advance.
|
||||||
|
cur_address += cur_pages * PageSize;
|
||||||
|
map_pages -= cur_pages;
|
||||||
|
|
||||||
|
pg_phys_addr += cur_pages * PageSize;
|
||||||
|
pg_pages -= cur_pages;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check if we're done.
|
||||||
|
if (last_map_address <= info.GetLastAddress()) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Advance.
|
||||||
|
++it;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
if (result.IsError()) {
|
|
||||||
return result;
|
// Iterate over the memory, unmapping as we go.
|
||||||
|
auto it = block_manager->FindIterator(cur_address);
|
||||||
|
while (true) {
|
||||||
|
// Check that the iterator is valid.
|
||||||
|
ASSERT(it != block_manager->end());
|
||||||
|
|
||||||
|
// Get the memory info.
|
||||||
|
const KMemoryInfo info = it->GetMemoryInfo();
|
||||||
|
|
||||||
|
// If the memory state is normal, we need to unmap it.
|
||||||
|
if (info.GetState() == KMemoryState::Normal) {
|
||||||
|
// Determine the range to unmap.
|
||||||
|
const size_t cur_pages = std::min(VAddr(info.GetEndAddress()) - cur_address,
|
||||||
|
last_address + 1 - cur_address) /
|
||||||
|
PageSize;
|
||||||
|
|
||||||
|
// Unmap.
|
||||||
|
R_TRY(Operate(cur_address, cur_pages, KMemoryPermission::None, OperationType::Unmap));
|
||||||
}
|
}
|
||||||
|
|
||||||
const std::size_t num_pages{size / PageSize};
|
// Check if we're done.
|
||||||
system.Kernel().MemoryManager().Free(page_linked_list, num_pages, memory_pool,
|
if (last_address <= info.GetLastAddress()) {
|
||||||
allocation_option);
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
block_manager->Update(addr, num_pages, KMemoryState::Free);
|
// Advance.
|
||||||
|
cur_address = info.GetEndAddress();
|
||||||
|
++it;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Release the memory resource.
|
||||||
|
mapped_physical_memory_size -= mapped_size;
|
||||||
auto process{system.Kernel().CurrentProcess()};
|
auto process{system.Kernel().CurrentProcess()};
|
||||||
process->GetResourceLimit()->Release(LimitableResource::PhysicalMemory, mapped_size);
|
process->GetResourceLimit()->Release(LimitableResource::PhysicalMemory, mapped_size);
|
||||||
mapped_physical_memory_size -= mapped_size;
|
|
||||||
|
// Update memory blocks.
|
||||||
|
system.Kernel().MemoryManager().Free(pg, size / PageSize, memory_pool, allocation_option);
|
||||||
|
block_manager->Update(address, size / PageSize, KMemoryState::Free, KMemoryPermission::None,
|
||||||
|
KMemoryAttribute::None);
|
||||||
|
|
||||||
|
// We succeeded.
|
||||||
|
remap_guard.Cancel();
|
||||||
|
|
||||||
return ResultSuccess;
|
return ResultSuccess;
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user