There are still some other issues not addressed here, but it's a start.
Workarounds for false-positive reports:
- `RasterizerAccelerated`: Put a gigantic array behind a `unique_ptr`,
because UBSan has a [hardcoded limit](https://stackoverflow.com/questions/64531383/c-runtime-error-using-fsanitize-undefined-object-has-a-possibly-invalid-vp)
of how big it thinks objects can be, specifically when dealing with
offset-to-top values used with multiple inheritance. Hopefully this
doesn't have a performance impact.
- `QueryCacheBase::QueryCacheBase`: Avoid an operation that UBSan thinks
is UB even though it at least arguably isn't. See the link in the
comment for more information.
Fixes for correct reports:
- `PageTable`, `Memory`: Use `uintptr_t` values instead of pointers to
avoid UB from pointer overflow (when pointer arithmetic wraps around
the address space).
- `KScheduler::Reload`: `thread->GetOwnerProcess()` can be `nullptr`;
avoid calling methods on it in this case. (The existing code returns
a garbage reference to a field, which is then passed into
`LoadWatchpointArray`, and apparently it's never used, so it's
harmless in practice but still triggers UBSan.)
- `KAutoObject::Close`: This function calls `this->Destroy()`, which
overwrites the beginning of the object with junk (specifically a free
list pointer). Then it calls `this->UnregisterWithKernel()`. UBSan
complains about a type mismatch because the vtable has been
overwritten, and I believe this is indeed UB. `UnregisterWithKernel`
also loads `m_kernel` from the 'freed' object, which seems to be
technically safe (the overwriting doesn't extend as far as that
field), but seems dubious. Switch to a `static` method and load
`m_kernel` in advance.
Even though it compiles and runs fine on the latest Windows versions,
older LTSC builds will crash due to lacking support somewhere in the OS.
For now just disable it for MSVC until either Microsoft fixes this or we
no longer support 1809 LTSC.
Adds <version> since we are looking at C++ implementation version
details. Also moves exception header includes into the if preprocessor
command since we only use it there.
Windows will let you select time zones that will fail in their
own C++ implementation library. Evidently from the stack trace, we get a
runtime error to work with, so catch it and use the fallback.
Previously, we were mixing the raw CPU frequency and CNTFRQ.
The raw CPU frequency (1020 MHz) should've never been used as CNTPCT (whose frequency is CNTFRQ) is the only counter available.
Moves it from Settings to Common::TimeZone, since this algorithm doesn't
depend on the setting. It also lets us use it in other libraries.
common: Various fixes
time_zone: Don't double up the std::abs
Too many absolute values were causing mirrored time zones to resolve
as the same.
Prevents needing to deduce the non-Switch setting in core. Instead, we
deduce the meaning of this setting where the heresy is committed, in
common.
settings: Remove strftime usage
GetTimeZoneString: Use standard features
Also forces GMT on MinGW due to broken strftime.