// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #pragma once #include #include #include #include #include #include #include "common/assert.h" #include "common/bit_field.h" #include "common/common_types.h" namespace Tegra::Shader { struct Register { /// Number of registers static constexpr size_t NumRegisters = 256; /// Register 255 is special cased to always be 0 static constexpr size_t ZeroIndex = 255; enum class Size : u64 { Byte = 0, Short = 1, Word = 2, Long = 3, }; constexpr Register() = default; constexpr Register(u64 value) : value(value) {} constexpr operator u64() const { return value; } template constexpr u64 operator-(const T& oth) const { return value - oth; } template constexpr u64 operator&(const T& oth) const { return value & oth; } constexpr u64 operator&(const Register& oth) const { return value & oth.value; } constexpr u64 operator~() const { return ~value; } u64 GetSwizzledIndex(u64 elem) const { elem = (value + elem) & 3; return (value & ~3) + elem; } private: u64 value{}; }; union Attribute { Attribute() = default; constexpr explicit Attribute(u64 value) : value(value) {} enum class Index : u64 { Position = 7, Attribute_0 = 8, Attribute_31 = 39, // This attribute contains a tuple of (~, ~, InstanceId, VertexId) when inside a vertex // shader, and a tuple of (TessCoord.x, TessCoord.y, TessCoord.z, ~) when inside a Tess Eval // shader. TessCoordInstanceIDVertexID = 47, // This attribute contains a tuple of (Unk, Unk, Unk, gl_FrontFacing) when inside a fragment // shader. It is unknown what the other values contain. FrontFacing = 63, }; union { BitField<22, 2, u64> element; BitField<24, 6, Index> index; BitField<47, 3, u64> size; } fmt20; union { BitField<30, 2, u64> element; BitField<32, 6, Index> index; } fmt28; BitField<39, 8, u64> reg; u64 value{}; }; union Sampler { Sampler() = default; constexpr explicit Sampler(u64 value) : value(value) {} enum class Index : u64 { Sampler_0 = 8, }; BitField<36, 13, Index> index; u64 value{}; }; } // namespace Tegra::Shader namespace std { // TODO(bunnei): The below is forbidden by the C++ standard, but works fine. See #330. template <> struct make_unsigned { using type = Tegra::Shader::Attribute; }; template <> struct make_unsigned { using type = Tegra::Shader::Register; }; } // namespace std namespace Tegra::Shader { enum class Pred : u64 { UnusedIndex = 0x7, NeverExecute = 0xF, }; enum class PredCondition : u64 { LessThan = 1, Equal = 2, LessEqual = 3, GreaterThan = 4, NotEqual = 5, GreaterEqual = 6, LessThanWithNan = 9, GreaterThanWithNan = 12, NotEqualWithNan = 13, // TODO(Subv): Other condition types }; enum class PredOperation : u64 { And = 0, Or = 1, Xor = 2, }; enum class LogicOperation : u64 { And = 0, Or = 1, Xor = 2, PassB = 3, }; enum class SubOp : u64 { Cos = 0x0, Sin = 0x1, Ex2 = 0x2, Lg2 = 0x3, Rcp = 0x4, Rsq = 0x5, Sqrt = 0x8, }; enum class F2iRoundingOp : u64 { None = 0, Floor = 1, Ceil = 2, Trunc = 3, }; enum class F2fRoundingOp : u64 { None = 0, Pass = 3, Round = 8, Floor = 9, Ceil = 10, Trunc = 11, }; enum class UniformType : u64 { UnsignedByte = 0, SignedByte = 1, UnsignedShort = 2, SignedShort = 3, Single = 4, Double = 5, }; enum class IMinMaxExchange : u64 { None = 0, XLo = 1, XMed = 2, XHi = 3, }; enum class XmadMode : u64 { None = 0, CLo = 1, CHi = 2, CSfu = 3, CBcc = 4, }; enum class FlowCondition : u64 { Always = 0xF, Fcsm_Tr = 0x1C, // TODO(bunnei): What is this used for? }; enum class PredicateResultMode : u64 { None = 0x0, NotZero = 0x3, }; enum class TextureType : u64 { Texture1D = 0, Texture2D = 1, Texture3D = 2, TextureCube = 3, }; enum class IpaMode : u64 { Pass = 0, None = 1, Constant = 2, Sc = 3 }; union Instruction { Instruction& operator=(const Instruction& instr) { value = instr.value; return *this; } constexpr Instruction(u64 value) : value{value} {} BitField<0, 8, Register> gpr0; BitField<8, 8, Register> gpr8; union { BitField<16, 4, Pred> full_pred; BitField<16, 3, u64> pred_index; } pred; BitField<19, 1, u64> negate_pred; BitField<20, 8, Register> gpr20; BitField<20, 4, SubOp> sub_op; BitField<28, 8, Register> gpr28; BitField<39, 8, Register> gpr39; BitField<48, 16, u64> opcode; union { BitField<20, 19, u64> imm20_19; BitField<20, 32, s64> imm20_32; BitField<45, 1, u64> negate_b; BitField<46, 1, u64> abs_a; BitField<48, 1, u64> negate_a; BitField<49, 1, u64> abs_b; BitField<50, 1, u64> saturate_d; BitField<56, 1, u64> negate_imm; union { BitField<39, 3, u64> pred; BitField<42, 1, u64> negate_pred; } fmnmx; union { BitField<39, 1, u64> invert_a; BitField<40, 1, u64> invert_b; BitField<41, 2, LogicOperation> operation; BitField<44, 2, PredicateResultMode> pred_result_mode; BitField<48, 3, Pred> pred48; } lop; union { BitField<53, 2, LogicOperation> operation; BitField<55, 1, u64> invert_a; BitField<56, 1, u64> invert_b; } lop32i; union { BitField<28, 8, u64> imm_lut28; BitField<48, 8, u64> imm_lut48; u32 GetImmLut28() const { return static_cast(imm_lut28); } u32 GetImmLut48() const { return static_cast(imm_lut48); } } lop3; u32 GetImm20_19() const { u32 imm{static_cast(imm20_19)}; imm <<= 12; imm |= negate_imm ? 0x80000000 : 0; return imm; } u32 GetImm20_32() const { return static_cast(imm20_32); } s32 GetSignedImm20_20() const { u32 immediate = static_cast(imm20_19 | (negate_imm << 19)); // Sign extend the 20-bit value. u32 mask = 1U << (20 - 1); return static_cast((immediate ^ mask) - mask); } } alu; union { BitField<54, 3, IpaMode> mode; } ipa; union { BitField<48, 1, u64> negate_b; } fmul; union { BitField<48, 1, u64> is_signed; } shift; union { BitField<39, 5, u64> shift_amount; BitField<48, 1, u64> negate_b; BitField<49, 1, u64> negate_a; } alu_integer; union { BitField<39, 3, u64> pred; BitField<42, 1, u64> neg_pred; } sel; union { BitField<39, 3, u64> pred; BitField<42, 1, u64> negate_pred; BitField<43, 2, IMinMaxExchange> exchange; BitField<48, 1, u64> is_signed; } imnmx; union { BitField<54, 1, u64> saturate; BitField<56, 1, u64> negate_a; } iadd32i; union { BitField<53, 1, u64> negate_b; BitField<54, 1, u64> abs_a; BitField<56, 1, u64> negate_a; BitField<57, 1, u64> abs_b; } fadd32i; union { BitField<20, 8, u64> shift_position; BitField<28, 8, u64> shift_length; BitField<48, 1, u64> negate_b; BitField<49, 1, u64> negate_a; u64 GetLeftShiftValue() const { return 32 - (shift_position + shift_length); } } bfe; union { BitField<0, 5, FlowCondition> cond; } flow; union { BitField<48, 1, u64> negate_b; BitField<49, 1, u64> negate_c; } ffma; union { BitField<48, 3, UniformType> type; BitField<44, 2, u64> unknown; } ld_c; union { BitField<0, 3, u64> pred0; BitField<3, 3, u64> pred3; BitField<7, 1, u64> abs_a; BitField<39, 3, u64> pred39; BitField<42, 1, u64> neg_pred; BitField<43, 1, u64> neg_a; BitField<44, 1, u64> abs_b; BitField<45, 2, PredOperation> op; BitField<47, 1, u64> ftz; BitField<48, 4, PredCondition> cond; BitField<56, 1, u64> neg_b; } fsetp; union { BitField<0, 3, u64> pred0; BitField<3, 3, u64> pred3; BitField<39, 3, u64> pred39; BitField<42, 1, u64> neg_pred; BitField<45, 2, PredOperation> op; BitField<48, 1, u64> is_signed; BitField<49, 3, PredCondition> cond; } isetp; union { BitField<0, 3, u64> pred0; BitField<3, 3, u64> pred3; BitField<12, 3, u64> pred12; BitField<15, 1, u64> neg_pred12; BitField<24, 2, PredOperation> cond; BitField<29, 3, u64> pred29; BitField<32, 1, u64> neg_pred29; BitField<39, 3, u64> pred39; BitField<42, 1, u64> neg_pred39; BitField<45, 2, PredOperation> op; } psetp; union { BitField<39, 3, u64> pred39; BitField<42, 1, u64> neg_pred; BitField<43, 1, u64> neg_a; BitField<44, 1, u64> abs_b; BitField<45, 2, PredOperation> op; BitField<48, 4, PredCondition> cond; BitField<52, 1, u64> bf; BitField<53, 1, u64> neg_b; BitField<54, 1, u64> abs_a; BitField<55, 1, u64> ftz; BitField<56, 1, u64> neg_imm; } fset; union { BitField<39, 3, u64> pred39; BitField<42, 1, u64> neg_pred; BitField<44, 1, u64> bf; BitField<45, 2, PredOperation> op; BitField<48, 1, u64> is_signed; BitField<49, 3, PredCondition> cond; } iset; union { BitField<8, 2, Register::Size> dest_size; BitField<10, 2, Register::Size> src_size; BitField<12, 1, u64> is_output_signed; BitField<13, 1, u64> is_input_signed; BitField<41, 2, u64> selector; BitField<45, 1, u64> negate_a; BitField<49, 1, u64> abs_a; union { BitField<39, 2, F2iRoundingOp> rounding; } f2i; union { BitField<39, 4, F2fRoundingOp> rounding; } f2f; } conversion; union { BitField<28, 1, u64> array; BitField<29, 2, TextureType> texture_type; BitField<31, 4, u64> component_mask; bool IsComponentEnabled(size_t component) const { return ((1ull << component) & component_mask) != 0; } } tex; union { BitField<28, 1, u64> array; BitField<29, 2, TextureType> texture_type; BitField<56, 2, u64> component; } tld4; union { BitField<52, 2, u64> component; } tld4s; union { BitField<0, 8, Register> gpr0; BitField<28, 8, Register> gpr28; BitField<50, 3, u64> component_mask_selector; BitField<53, 4, u64> texture_info; TextureType GetTextureType() const { // The TEXS instruction has a weird encoding for the texture type. if (texture_info == 0) return TextureType::Texture1D; if (texture_info >= 1 && texture_info <= 9) return TextureType::Texture2D; if (texture_info >= 10 && texture_info <= 11) return TextureType::Texture3D; if (texture_info >= 12 && texture_info <= 13) return TextureType::TextureCube; LOG_CRITICAL(HW_GPU, "Unhandled texture_info: {}", static_cast(texture_info.Value())); UNREACHABLE(); } bool IsArrayTexture() const { // TEXS only supports Texture2D arrays. return texture_info >= 7 && texture_info <= 9; } bool HasTwoDestinations() const { return gpr28.Value() != Register::ZeroIndex; } bool IsComponentEnabled(size_t component) const { static constexpr std::array, 4> mask_lut{{ {}, {0x1, 0x2, 0x4, 0x8, 0x3, 0x9, 0xa, 0xc}, {0x1, 0x2, 0x4, 0x8, 0x3, 0x9, 0xa, 0xc}, {0x7, 0xb, 0xd, 0xe, 0xf}, }}; size_t index{gpr0.Value() != Register::ZeroIndex ? 1U : 0U}; index |= gpr28.Value() != Register::ZeroIndex ? 2 : 0; u32 mask = mask_lut[index][component_mask_selector]; // A mask of 0 means this instruction uses an unimplemented mask. ASSERT(mask != 0); return ((1ull << component) & mask) != 0; } } texs; union { BitField<53, 4, u64> texture_info; TextureType GetTextureType() const { // The TLDS instruction has a weird encoding for the texture type. if (texture_info >= 0 && texture_info <= 1) { return TextureType::Texture1D; } if (texture_info == 2 || texture_info == 8 || texture_info == 12 || (texture_info >= 4 && texture_info <= 6)) { return TextureType::Texture2D; } if (texture_info == 7) { return TextureType::Texture3D; } LOG_CRITICAL(HW_GPU, "Unhandled texture_info: {}", static_cast(texture_info.Value())); UNREACHABLE(); } bool IsArrayTexture() const { // TEXS only supports Texture2D arrays. return texture_info == 8; } } tlds; union { BitField<20, 24, u64> target; BitField<5, 1, u64> constant_buffer; s32 GetBranchTarget() const { // Sign extend the branch target offset u32 mask = 1U << (24 - 1); u32 value = static_cast(target); // The branch offset is relative to the next instruction and is stored in bytes, so // divide it by the size of an instruction and add 1 to it. return static_cast((value ^ mask) - mask) / sizeof(Instruction) + 1; } } bra; union { BitField<20, 16, u64> imm20_16; BitField<36, 1, u64> product_shift_left; BitField<37, 1, u64> merge_37; BitField<48, 1, u64> sign_a; BitField<49, 1, u64> sign_b; BitField<50, 3, XmadMode> mode; BitField<52, 1, u64> high_b; BitField<53, 1, u64> high_a; BitField<56, 1, u64> merge_56; } xmad; union { BitField<20, 14, u64> offset; BitField<34, 5, u64> index; } cbuf34; union { BitField<20, 16, s64> offset; BitField<36, 5, u64> index; } cbuf36; BitField<61, 1, u64> is_b_imm; BitField<60, 1, u64> is_b_gpr; BitField<59, 1, u64> is_c_gpr; Attribute attribute; Sampler sampler; u64 value; }; static_assert(sizeof(Instruction) == 0x8, "Incorrect structure size"); static_assert(std::is_standard_layout_v, "Instruction is not standard layout"); class OpCode { public: enum class Id { KIL, SSY, SYNC, DEPBAR, BFE_C, BFE_R, BFE_IMM, BRA, LD_A, LD_C, ST_A, LDG, // Load from global memory STG, // Store in global memory TEX, TEXQ, // Texture Query TEXS, // Texture Fetch with scalar/non-vec4 source/destinations TLDS, // Texture Load with scalar/non-vec4 source/destinations TLD4, // Texture Load 4 TLD4S, // Texture Load 4 with scalar / non - vec4 source / destinations EXIT, IPA, FFMA_IMM, // Fused Multiply and Add FFMA_CR, FFMA_RC, FFMA_RR, FADD_C, FADD_R, FADD_IMM, FADD32I, FMUL_C, FMUL_R, FMUL_IMM, FMUL32_IMM, IADD_C, IADD_R, IADD_IMM, IADD3_C, IADD3_R, IADD3_IMM, IADD32I, ISCADD_C, // Scale and Add ISCADD_R, ISCADD_IMM, SEL_C, SEL_R, SEL_IMM, MUFU, // Multi-Function Operator RRO_C, // Range Reduction Operator RRO_R, RRO_IMM, F2F_C, F2F_R, F2F_IMM, F2I_C, F2I_R, F2I_IMM, I2F_C, I2F_R, I2F_IMM, I2I_C, I2I_R, I2I_IMM, LOP_C, LOP_R, LOP_IMM, LOP32I, LOP3_C, LOP3_R, LOP3_IMM, MOV_C, MOV_R, MOV_IMM, MOV32_IMM, SHL_C, SHL_R, SHL_IMM, SHR_C, SHR_R, SHR_IMM, FMNMX_C, FMNMX_R, FMNMX_IMM, IMNMX_C, IMNMX_R, IMNMX_IMM, FSETP_C, // Set Predicate FSETP_R, FSETP_IMM, FSET_C, FSET_R, FSET_IMM, ISETP_C, ISETP_IMM, ISETP_R, ISET_R, ISET_C, ISET_IMM, PSETP, XMAD_IMM, XMAD_CR, XMAD_RC, XMAD_RR, }; enum class Type { Trivial, Arithmetic, ArithmeticImmediate, ArithmeticInteger, ArithmeticIntegerImmediate, Bfe, Shift, Ffma, Flow, Synch, Memory, FloatSet, FloatSetPredicate, IntegerSet, IntegerSetPredicate, PredicateSetPredicate, Conversion, Xmad, Unknown, }; /// Returns whether an opcode has an execution predicate field or not (ie, whether it can be /// conditionally executed). static bool IsPredicatedInstruction(Id opcode) { // TODO(Subv): Add the rest of unpredicated instructions. return opcode != Id::SSY; } class Matcher { public: Matcher(const char* const name, u16 mask, u16 expected, OpCode::Id id, OpCode::Type type) : name{name}, mask{mask}, expected{expected}, id{id}, type{type} {} const char* GetName() const { return name; } u16 GetMask() const { return mask; } Id GetId() const { return id; } Type GetType() const { return type; } /** * Tests to see if the given instruction is the instruction this matcher represents. * @param instruction The instruction to test * @returns true if the given instruction matches. */ bool Matches(u16 instruction) const { return (instruction & mask) == expected; } private: const char* name; u16 mask; u16 expected; Id id; Type type; }; static boost::optional Decode(Instruction instr) { static const auto table{GetDecodeTable()}; const auto matches_instruction = [instr](const auto& matcher) { return matcher.Matches(static_cast(instr.opcode)); }; auto iter = std::find_if(table.begin(), table.end(), matches_instruction); return iter != table.end() ? boost::optional(*iter) : boost::none; } private: struct Detail { private: static constexpr size_t opcode_bitsize = 16; /** * Generates the mask and the expected value after masking from a given bitstring. * A '0' in a bitstring indicates that a zero must be present at that bit position. * A '1' in a bitstring indicates that a one must be present at that bit position. */ static auto GetMaskAndExpect(const char* const bitstring) { u16 mask = 0, expect = 0; for (size_t i = 0; i < opcode_bitsize; i++) { const size_t bit_position = opcode_bitsize - i - 1; switch (bitstring[i]) { case '0': mask |= 1 << bit_position; break; case '1': expect |= 1 << bit_position; mask |= 1 << bit_position; break; default: // Ignore break; } } return std::make_tuple(mask, expect); } public: /// Creates a matcher that can match and parse instructions based on bitstring. static auto GetMatcher(const char* const bitstring, OpCode::Id op, OpCode::Type type, const char* const name) { const auto mask_expect = GetMaskAndExpect(bitstring); return Matcher(name, std::get<0>(mask_expect), std::get<1>(mask_expect), op, type); } }; static std::vector GetDecodeTable() { std::vector table = { #define INST(bitstring, op, type, name) Detail::GetMatcher(bitstring, op, type, name) INST("111000110011----", Id::KIL, Type::Flow, "KIL"), INST("111000101001----", Id::SSY, Type::Flow, "SSY"), INST("111000100100----", Id::BRA, Type::Flow, "BRA"), INST("1111000011110---", Id::DEPBAR, Type::Synch, "DEPBAR"), INST("1111000011111---", Id::SYNC, Type::Synch, "SYNC"), INST("1110111111011---", Id::LD_A, Type::Memory, "LD_A"), INST("1110111110010---", Id::LD_C, Type::Memory, "LD_C"), INST("1110111111110---", Id::ST_A, Type::Memory, "ST_A"), INST("1110111011010---", Id::LDG, Type::Memory, "LDG"), INST("1110111011011---", Id::STG, Type::Memory, "STG"), INST("110000----111---", Id::TEX, Type::Memory, "TEX"), INST("1101111101001---", Id::TEXQ, Type::Memory, "TEXQ"), INST("1101100---------", Id::TEXS, Type::Memory, "TEXS"), INST("1101101---------", Id::TLDS, Type::Memory, "TLDS"), INST("110010----111---", Id::TLD4, Type::Memory, "TLD4"), INST("1101111100------", Id::TLD4S, Type::Memory, "TLD4S"), INST("111000110000----", Id::EXIT, Type::Trivial, "EXIT"), INST("11100000--------", Id::IPA, Type::Trivial, "IPA"), INST("0011001-1-------", Id::FFMA_IMM, Type::Ffma, "FFMA_IMM"), INST("010010011-------", Id::FFMA_CR, Type::Ffma, "FFMA_CR"), INST("010100011-------", Id::FFMA_RC, Type::Ffma, "FFMA_RC"), INST("010110011-------", Id::FFMA_RR, Type::Ffma, "FFMA_RR"), INST("0100110001011---", Id::FADD_C, Type::Arithmetic, "FADD_C"), INST("0101110001011---", Id::FADD_R, Type::Arithmetic, "FADD_R"), INST("0011100-01011---", Id::FADD_IMM, Type::Arithmetic, "FADD_IMM"), INST("000010----------", Id::FADD32I, Type::ArithmeticImmediate, "FADD32I"), INST("0100110001101---", Id::FMUL_C, Type::Arithmetic, "FMUL_C"), INST("0101110001101---", Id::FMUL_R, Type::Arithmetic, "FMUL_R"), INST("0011100-01101---", Id::FMUL_IMM, Type::Arithmetic, "FMUL_IMM"), INST("00011110--------", Id::FMUL32_IMM, Type::ArithmeticImmediate, "FMUL32_IMM"), INST("0100110000010---", Id::IADD_C, Type::ArithmeticInteger, "IADD_C"), INST("0101110000010---", Id::IADD_R, Type::ArithmeticInteger, "IADD_R"), INST("0011100-00010---", Id::IADD_IMM, Type::ArithmeticInteger, "IADD_IMM"), INST("010011001100----", Id::IADD3_C, Type::ArithmeticInteger, "IADD3_C"), INST("010111001100----", Id::IADD3_R, Type::ArithmeticInteger, "IADD3_R"), INST("0011100-1100----", Id::IADD3_IMM, Type::ArithmeticInteger, "IADD3_IMM"), INST("0001110---------", Id::IADD32I, Type::ArithmeticIntegerImmediate, "IADD32I"), INST("0100110000011---", Id::ISCADD_C, Type::ArithmeticInteger, "ISCADD_C"), INST("0101110000011---", Id::ISCADD_R, Type::ArithmeticInteger, "ISCADD_R"), INST("0011100-00011---", Id::ISCADD_IMM, Type::ArithmeticInteger, "ISCADD_IMM"), INST("0100110010100---", Id::SEL_C, Type::ArithmeticInteger, "SEL_C"), INST("0101110010100---", Id::SEL_R, Type::ArithmeticInteger, "SEL_R"), INST("0011100-10100---", Id::SEL_IMM, Type::ArithmeticInteger, "SEL_IMM"), INST("0101000010000---", Id::MUFU, Type::Arithmetic, "MUFU"), INST("0100110010010---", Id::RRO_C, Type::Arithmetic, "RRO_C"), INST("0101110010010---", Id::RRO_R, Type::Arithmetic, "RRO_R"), INST("0011100-10010---", Id::RRO_IMM, Type::Arithmetic, "RRO_IMM"), INST("0100110010101---", Id::F2F_C, Type::Conversion, "F2F_C"), INST("0101110010101---", Id::F2F_R, Type::Conversion, "F2F_R"), INST("0011100-10101---", Id::F2F_IMM, Type::Conversion, "F2F_IMM"), INST("0100110010110---", Id::F2I_C, Type::Conversion, "F2I_C"), INST("0101110010110---", Id::F2I_R, Type::Conversion, "F2I_R"), INST("0011100-10110---", Id::F2I_IMM, Type::Conversion, "F2I_IMM"), INST("0100110010011---", Id::MOV_C, Type::Arithmetic, "MOV_C"), INST("0101110010011---", Id::MOV_R, Type::Arithmetic, "MOV_R"), INST("0011100-10011---", Id::MOV_IMM, Type::Arithmetic, "MOV_IMM"), INST("000000010000----", Id::MOV32_IMM, Type::ArithmeticImmediate, "MOV32_IMM"), INST("0100110001100---", Id::FMNMX_C, Type::Arithmetic, "FMNMX_C"), INST("0101110001100---", Id::FMNMX_R, Type::Arithmetic, "FMNMX_R"), INST("0011100-01100---", Id::FMNMX_IMM, Type::Arithmetic, "FMNMX_IMM"), INST("0100110000100---", Id::IMNMX_C, Type::ArithmeticInteger, "IMNMX_C"), INST("0101110000100---", Id::IMNMX_R, Type::ArithmeticInteger, "IMNMX_R"), INST("0011100-00100---", Id::IMNMX_IMM, Type::ArithmeticInteger, "IMNMX_IMM"), INST("0100110000000---", Id::BFE_C, Type::Bfe, "BFE_C"), INST("0101110000000---", Id::BFE_R, Type::Bfe, "BFE_R"), INST("0011100-00000---", Id::BFE_IMM, Type::Bfe, "BFE_IMM"), INST("0100110001000---", Id::LOP_C, Type::ArithmeticInteger, "LOP_C"), INST("0101110001000---", Id::LOP_R, Type::ArithmeticInteger, "LOP_R"), INST("0011100001000---", Id::LOP_IMM, Type::ArithmeticInteger, "LOP_IMM"), INST("000001----------", Id::LOP32I, Type::ArithmeticIntegerImmediate, "LOP32I"), INST("0000001---------", Id::LOP3_C, Type::ArithmeticInteger, "LOP3_C"), INST("0101101111100---", Id::LOP3_R, Type::ArithmeticInteger, "LOP3_R"), INST("0011110---------", Id::LOP3_IMM, Type::ArithmeticInteger, "LOP3_IMM"), INST("0100110001001---", Id::SHL_C, Type::Shift, "SHL_C"), INST("0101110001001---", Id::SHL_R, Type::Shift, "SHL_R"), INST("0011100-01001---", Id::SHL_IMM, Type::Shift, "SHL_IMM"), INST("0100110000101---", Id::SHR_C, Type::Shift, "SHR_C"), INST("0101110000101---", Id::SHR_R, Type::Shift, "SHR_R"), INST("0011100-00101---", Id::SHR_IMM, Type::Shift, "SHR_IMM"), INST("0100110011100---", Id::I2I_C, Type::Conversion, "I2I_C"), INST("0101110011100---", Id::I2I_R, Type::Conversion, "I2I_R"), INST("01110001-1000---", Id::I2I_IMM, Type::Conversion, "I2I_IMM"), INST("0100110010111---", Id::I2F_C, Type::Conversion, "I2F_C"), INST("0101110010111---", Id::I2F_R, Type::Conversion, "I2F_R"), INST("0011100-10111---", Id::I2F_IMM, Type::Conversion, "I2F_IMM"), INST("01011000--------", Id::FSET_R, Type::FloatSet, "FSET_R"), INST("0100100---------", Id::FSET_C, Type::FloatSet, "FSET_C"), INST("0011000---------", Id::FSET_IMM, Type::FloatSet, "FSET_IMM"), INST("010010111011----", Id::FSETP_C, Type::FloatSetPredicate, "FSETP_C"), INST("010110111011----", Id::FSETP_R, Type::FloatSetPredicate, "FSETP_R"), INST("0011011-1011----", Id::FSETP_IMM, Type::FloatSetPredicate, "FSETP_IMM"), INST("010010110110----", Id::ISETP_C, Type::IntegerSetPredicate, "ISETP_C"), INST("010110110110----", Id::ISETP_R, Type::IntegerSetPredicate, "ISETP_R"), INST("0011011-0110----", Id::ISETP_IMM, Type::IntegerSetPredicate, "ISETP_IMM"), INST("010110110101----", Id::ISET_R, Type::IntegerSet, "ISET_R"), INST("010010110101----", Id::ISET_C, Type::IntegerSet, "ISET_C"), INST("0011011-0101----", Id::ISET_IMM, Type::IntegerSet, "ISET_IMM"), INST("0101000010010---", Id::PSETP, Type::PredicateSetPredicate, "PSETP"), INST("0011011-00------", Id::XMAD_IMM, Type::Xmad, "XMAD_IMM"), INST("0100111---------", Id::XMAD_CR, Type::Xmad, "XMAD_CR"), INST("010100010-------", Id::XMAD_RC, Type::Xmad, "XMAD_RC"), INST("0101101100------", Id::XMAD_RR, Type::Xmad, "XMAD_RR"), }; #undef INST std::stable_sort(table.begin(), table.end(), [](const auto& a, const auto& b) { // If a matcher has more bits in its mask it is more specific, so it // should come first. return std::bitset<16>(a.GetMask()).count() > std::bitset<16>(b.GetMask()).count(); }); return table; } }; } // namespace Tegra::Shader